NH₃ Adsorption and SCR Reactions over a Cu-CHA Catalyst – NH₃ Injected as a Pulse

Peter Hou and William S. Epling

University of Waterloo

Steven Schmieg and Wei Li

General Motors Global R&D

Background

Passive SCR

Engine
$$\rightarrow$$
 TWC or LNT $\xrightarrow{\text{NH}_3}$ **SCR**

- Adsorbed NH_3 reacts with any NO_X slip past the LNT or TWC
- NH₃ to SCR is not continuous
 - From LNT during regen
 - From TWC during rich operation

Objectives

- How do key parameters affect NH₃ adsorption profiles?
 - Temperature
 - Exposure time and concentration
- How do the evolved profiles affect the standard and fast SCR reactions?
- How does thermal aging impact these?

Experimental approach

- BASF-supplied Cu/CHA SCR catalyst
 - 16 hrs at 500°C or 72 hrs at 700°C
- Spaci-FTIR technique

(1) inlet thermocouple, (2) outlet thermocouple, (3) hollow quartz tubes, (4) quartz reactor tube, (5) catalyst monolith, (6) insulation/wrapping material, (7) silica capillary

SS Results, standard SCR

NOx conversion (%)

- Increasing T, increasing conversion
- Increasing T, reaction zone moves closer to inlet
- At T > 300°C, not all the catalyst is being used

Waterloo

 $4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$ 100 80 → 150C 60 ---- 200C 40 <u>→</u> 300C * 400C **--** 500C 20 0 2 3 0 **Position (cm)**

> NO = 600 ppm, NH₃ = 600 ppm, 8% O₂, 5% CO₂, 2.5% H₂O

SS Results, fast SCR

1/3 of the catalyst being used, even at 200°C

Better conversion at 400°C than 500°C

SS Results, fast SCR

Why is performance better at 400 than 500?

NO ₂ Decomposition		
	NO outlet (nnm)	NO_2 outlet
(*C)		
200	298	310
300	283	330
400	295	315
500	449	146

300 ppm NO, 300 ppm NO₂, 8% O₂, 5% CO₂, 2.5% H₂O

With ~1:1 NO₂:NO in, NO₂ decomposition begins between 400 and 500°C (500°C conversion similar to standard SCR)

Therefore, above 400°C, fast SCR can be limited by NO_2 decomposing, but admittedly NH_3 oxidation light-off as well

SS results, NO₂ SCR

N_2O

- At 400°C, follows conversion
- At 500°C, a max occurs near cat in – N₂O decomp after

NO₂ = 600 ppm, NH₃ = 600 ppm, 8% O₂, 5% CO₂, 2.5% H₂O

SS results, NO₂ SCR

Highly selective: NO_2 and NH_3 are consumed in a 1:1 ratio

Proposed NO₂ SCR: $2NH_3 + 2NO_2 \rightarrow N_2 + N_2O + 3H_2O$ (1) $4NH_3 + 3NO_2 \rightarrow 3.5N_2 + 6H_2O$ (2)

 NO_2/NH_3 data indicate NO_2 SCR occurs via reaction (1) not (2)

But the outlet N₂O concentration is lower than would be predicted

- Example, 600 ppm NH_3 , 600 ppm $NO_2 \rightarrow$ theoretically 300 ppm N_2O
- N₂O = 170 (300°C) and 130-140 ppm (400°C)
- Again, NO₂ decomp leads to fast SCR reaction so it is not only NO₂ SCR

NH₃ adsorption

NH₃ storage significantly impacted by adsorption temperature and thermal aging

NH₃ adsorption profiles

- Far from saturation: not a step-change, f(exposure)
- Nearer saturation: f(exposure, coverage)

Effect of concentration

Same total dose of NH₃

- Sharper gradient with higher concentration → more at front, less at back of catalyst
- Waterloo Definite dependence on inlet concentration

Effect of aging

Aging leads to less total NH₃ adsorption

 therefore the NH₃ gradient is decreased → and spread across catalyst

Effect of T

Waterloo

In general as T increases, less NH₃ adsorbs

- Results in a more even distribution along the catalyst
- Except near saturation, same total amount adsorbed though

Stored NH₃ redistribution (migration)

Once the pulse ends, there will be a delay before $\ensuremath{\text{NO}_{X}}$ reaches the catalyst

Waterloo

Fast SCR reaction used to probe where NH₃ is adsorbed

Effect on total adsorbed (i.e. "escaped")

Cumulative stored amount initially drops \rightarrow weakly and strongly adsorbed NH₃

Effect of T on migration

An effect of T is noted for short times

At longer times, T has little effect

Again related to weakly and strongly adsorbed NH₃

Effect of aging on migration

a1: NH_3 storage on lightly aged catalyst; a2: NH_3 storage on highly aged catalyst; b1: time gap 10 s on lightly aged catalyst; b2: time gap 10 s on highly aged catalyst; c1: time gap 70 s on lightly aged catalyst; c2: time gap 70 s on highly aged catalyst.

Again, there is a more significant effect for short time gaps, but this effect decreased with longer times (weakly adsorbed NH_3 affected by aging, strongly not)

Effect on SCR

a1: 90 s 419 ppm NH₃ storage;

a2: 90 s 419 ppm NH₃ storage followed by a 90 s, 416 ppm NOx pulse; b1: 20 s 1150 ppm NH₃ storage; b2: 20 s 1150 ppm NH

b2: 20 s 1150 ppm NH₃
storage followed by a 60 s,
416 ppm NOx pulse;
c1: 60 s 419 ppm NH₃
storage;
c2: 60 s 419 ppm NH₃

storage followed by a 60 s, 416 ppm NOx pulse

Combining NH₃ storage and SCR data (storage after migration) shows reaction and migration pattern

NOX consumption on predosed surface

a1: 60 s NH₃ \rightarrow 60 s NO; lightly aged catalyst a2: 60 s NH₃ \rightarrow 60 s NO; highly aged catalyst; b1: 60 s NH₃ \rightarrow 60 s NOx (1:1 NO:NO₂); lightly aged catalyst; b2: 60 s NH₃ \rightarrow 60 s NOx (1:1 NO:NO₂); highly aged catalyst; c1: 60 s NH₃ \rightarrow 30 s NO; lightly aged catalyst; c2: 60 s NH₃ \rightarrow 30 s NO; highly aged catalyst

With aging \rightarrow less NH₃ adsorbed

- Obvious difference in performance when there is not "enough" $\rm NH_3$

- High adsorbed NH_3 :NO ratios \rightarrow less difference in Waterloo performance

Conclusions

- NH₃ adsorption profiles were measured using SpaciFTIR
- Migration of adsorbed NH₃ was observed
 - at short time gaps,
 - increased temperature, and
 - with aging, the more weakly adsorbed $\rm NH_3$ migrated

Acknowledgements

- General Motors R&D Lab
- BASF
- Ontario Centres of Excellence
- Natural Science and Engineering research Council of Canada

