Spatial Resolution of Reactant Species Consumption in Diesel Oxidation Catalysts

William S. Epling, Karishma Irani and Peter Hou University of Waterloo

Richard Blint General Motors

12th CLEERS Workshop

Background and motivation

- Running engines "lean"
 - improved fuel economy
 - less CO₂ emissions
 - But,
 - TWC does not work
 - Upcoming/current regulations limit NO_X and PM on diesels
- Issues
 - reduction of NO_X to N_2 in oxygen environment
 - oxidation of soot without melting the exhaust pipe
- Catalytic approach
 - SCR: HC, or NH₃ (urea)
 - NO_X storage/reduction

Background and motivation

Catalyst	Reaction type	Emissions
Selective catalytic reduction (SCR)	SCR by ammonia/urea	NO _x
	$4NO + 4NH_3 + O_2 \leftrightarrow 4N_2 + 6H_2O$	
	$2NO + 2NO_2 + 4NH_3 \leftrightarrow 4N_2 + 6H_2O$	
NO _x adsorbers (traps)	NO _X adsorption - lean exhaust,	NO _x , CO,
	reduction - rich conditions	HCs
	$NO + 0.5O_2 \leftrightarrow NO_2$	
	$BaO + 2NO_2 + 0.5O_2 \leftrightarrow Ba(NO_3)_2$	
Soot filters	Oxidation	PM
	$C+0.5O_2 \leftrightarrow CO$	
	$NO_2 + C \leftrightarrow CO + NO$	
	$CO+0.5O_2 \leftrightarrow CO_2$	

Engine out NO:NO₂ \rightarrow 90:10 3

Background and motivation for the DOC

Purpose

> NO + $0.5O_2 \rightarrow NO_2$ > CO + $0.5O_2 \rightarrow CO_2$ > HC + $O_2 \rightarrow CO_2 + H_2O$ > Heat generation

- Metal Washcoat Ceramic
- Oxidation of NO to NO₂ helps control NO_X and soot emissions
 - DOCs are installed upstream of SCR and NO_X trap catalysts, as well as soot filters
- Problems:
 - NO oxidation kinetically and thermodynamically limited
 - At low temperature CO, HC poisoning
 - New technologies require low T efficiencies
 - Lack of literature on DOCs!

Monolith supported Pt-Pd/Al₂O₃ model sample, dimensions = 2×3.5 cm

Gas analysis - FTIR analyzer

- Mass spectrometer

SPACiMS technique developed at ORNL

"Steady-state" experiments: constant temperature, vary the capillary position (T ramps and simpler mixture expts also run)

Feed characteristics:

tests included $C_{12}H_{26}$, C_3H_6 , CO, NO, He, 10% O_2 , 5% H_2O , balance N_2 , flowrate = 19.06 L/min (100K SV)

Results – low T profiles

- Concentrations of H₂, CO₂, C₃H₆, C₁₂H₂₆ and NO₂ measured at various positions
- No obvious (significant) changes observed no reaction along the length of sample

Results – mid T profiles

- H_2 drops and CO₂ increases from about 0.75 cm to 3 cm in the sample \rightarrow oxidation is occurring in this region of the monolith (CO_2 from CO oxidation, 5 C change)
- No obvious (significant) change in HC species ۲ concentrations observed - no reaction along the length of sample 7

 H_2 and CO_2 changes begin to occur closer to the sample inlet with the increase in T

- back-to-front ignition profile
- no obvious differences in CO vs H₂ light-off

again - no conversion

 H_2 and CO_2 changes begin to occur closer to the sample inlet with the increase in T

- back-to-front ignition profile (~5 C change)
- no obvious differences in CO vs H₂ light-off

 H_2 and CO_2 changes begin to occur closer to the sample inlet with the increase in T

Both C_3H_6 and $C_{12}H_{26}$ are being oxidized, with CO_2 increasing as well

 H_2 and CO_2 changes begin to occur closer to the sample inlet with the increase in T

Both C_3H_6 and $C_{12}H_{26}$ are being oxidized, with CO_2 increasing as well (55°C change)

Results – highlighting the oxidation profile

- Oxidation begins between 128 and 168°C
- At 168°C there appears to be an unreactive front portion and then at ~0.5 cm, reaction is observed
- With increasing temperature, the oxidation rate increases and less catalyst is needed to achieve the same conversions

Results – NO Oxidation inhibition

T ramp experiments – 200 ppm NO, 10% O₂, 5% H₂O, with or without 800 ppm C₃H₆

Low T inhibition of NO oxidation clearly observed (NO also inhibits C_3H_6 oxidation)

NO₂ oxidation "accelerates"

- after H₂ and CO are decreased and
- C_3H_6 begins to drop

NO oxidation "starts" when CO is gone and C_3H_6 drops

Results – NO Oxidation "inhibition"

HC inhibition of NO oxidation via NO_2 oxidation of HC

Results – NO Oxidation inhibition

NO oxidation observed after C_3H_6 light-off – C_3H_6 inhibition Actually – NO₂ is used as an oxidant for C_3H_6 oxidation

Conclusions

- Spatially-resolved concentrations of H₂, CO₂, C₃H₆, C₁₂H₂₆ and NO₂ were measured within a model DOC
- H_2 and CO lit-off prior to C_3H_6 and $C_{12}H_{26}$
- Back-to-front light-off was observed under these test conditions
- CO and C₃H₆ inhibition of NO oxidation was observed

Acknowledgements

- General Motors, Ontario Centres of Excellence and Natural Sciences and Engineering Research Council of Canada
- Naomi Zimmerman

