Spatially Resolving SCR Reactions

Bill Epling, John Luo, Peter Hou, Steve Schmieg and Wei Li

Introduction - NOX control options

- Aftertreatment techniques
 - NO_X storage/reduction (lean NO_X trap)
 - Selective catalytic reduction (SCR)
 - Selectivity between O₂ and NO_X
 - Reductants: NH_3 and/or HC
 - Standard SCR: $4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$
 - NO₂ leads to better low T performance (DOC)

Introduction - application of SCR

- SCR has been used since ~2005 commercially

 In Europe and NA
- And in combination with NSR (passive SCR)

Introduction - monoliths

- Vehicle catalysts, all monolith supported
- Significant research in modeling the chemistry and reactions along a monolith channel (1 and 2D)

Concentration

Temperature

 \mathbf{r}_1

T₁

Reactants In

Waterloo

April 19, 2011 CLEERS 2011

≠

≠

Introduction - spatial resolution (NSR)

Reactions over NSR catalysts characterized

• OSC, trapping, NH₃ and reductant evolution, S impact (Partridge, Choi et al)

 Temperature waves through the catalyst (Russell, Partridge, Choi et al)

Introduction - spatial resolution (DOC)

As well as over DOCs

University of

Competitive reactions between NO, CO, HCs (Irani)

April 19, 2011 CLEERS 2011

Introduction - spatial resolution (DPF)

Temperature profiles during soot burn

- Stationary conditions typically show back to front
- Luss et al have done substantial work recently in evaluating changes from high load (soot burning) to idle huge T changes observed

Introduction - SCR basics

- Three SCR reactions typically discussed
 - Standard SCR
 - $4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$
 - Fast SCR
 - $2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O$
 - NO₂ SCR (slow)
 - $8NH_3 + 6NO_2 \rightarrow 7N_2 + 12H_2O$
- Other key reactions
 - $2NO + O_2 \leftrightarrow 2NO_2$
 - $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$

Experiment set-up

Spaci-FTIR

Typical gas composition: 600 ppm NO_x , 600 ppm NH_3 , 8% O_2 , 2.5% H_2O , 5% CO_2 , balance N_2

Catalysts: Fe zeolite (provided by GM) Cu zeolite (provided by GM)

Standard performance check

- NO₂ has noted impact at low T
 - Best is 1:1 NO₂:NO at 200°C
- At T>200°C
 - Increasing NO₂ to 1:1 increases conversion
 - Past 1:1 small decease in conv observed
- Best performance at 400°C
 - Little NH₃ loss, good SCR kinetics

Expt conditions: $NO_X = 600 \text{ ppm}$, NH₃ = 600 ppm, 8% O₂, 5% CO₂, 2.5% H₂O; Catalyst: Fe-zeolite, space velocity= 28K hr⁻¹

N₂O formation

- No N₂O observed until NO₂:NO ratio exceeds 1:1
- Maximum between 200 and 300°C
- Decrease with higher NO₂ at 200°C due to NH₄NO₃ formation

[NH₃] effect

- NH₃ slightly negative effect at 200° C and if NO₂/NO_X ratio is < 0.5, at 250° C also
- Positive effect at T > 300° C or NO_2/NO_X ratio > 0.5

2.5% H₂O.

Standard SCR

- Increasing T, increasing conversion
- Increasing T, reaction zone moves closer to inlet
- At T ≥ 300°C, not all the catalyst is being used

Waterloo

Standard SCR

- At 200°C, some conversion – overall slow SCR kinetics
 - NH₃ over consumption
 limits total
 conversion at
 higher
 temperatures

NH₃ oxidation

Where does NH₃ over-consumption come from? 50 "light-off" ~ 400°C 40 conversion NH₃ limitation due to 30 oxidation in standard 20 SCR at 400, 500°C 10 0 150 250 350 450 550 NH₃ limited at 300°C Temperature (C) - slow reaction, therefore 600 Outlet Concentration (ppm) 500 more NH₃ oxidation residence 400 - NO time 300 -NH3 200 100 0

April 19, 2011 CLEERS 2011

n

1

2

Capillary Position (cm)

З

Kinetic analysis

- NO dependency $\rightarrow 1^{st}$ order in NO (0.97)
 - Obvious at 200°C, \uparrow conv at 250 and 300°C is due to \downarrow NH₃ inhibition
- O_2 dependency $\rightarrow \frac{1}{2}$ order (0.56)
- NH_3 dependency \rightarrow order (-0.43)
 - Low NH₃ → total consumption, theoretical NO_X conv attained (low NH₃ coverage, good reactivity)
 - Increasing NH₃, increasing surface coverage → theoretical NO_X
 conversion not met

Kinetic analysis (NO oxidation)

NO dependency $\rightarrow 1^{st}$ order in NO (1.0) O₂ dependency $\rightarrow \frac{1}{2}$ order (0.57)

Reaction	NO	O ₂	NH ₃
NO	1.00	0.57	n/a
oxidation	(0.99)	(0.99)	
standard	0.97	0.56	-0.43
SCR	(0.99)	(0.99)	(0.99)

Similarity in reaction orders suggests NO oxidation is rate limiting, key for low T performance

NO oxidation

 $200 \rightarrow 300 \rightarrow 400^{\circ}$ C, increased oxidation

500→550°C less oxidation, thermo limited

Standard SCR

- Increased conversion at 400°C
- Due to better selectivity for NH₃ use
- Due to improved NO oxidation (and SCR) and
- NH₃ oxid just at light off

Fast SCR

1/3 of the catalyst being used, even at 200°C

Better conversion at 400°C than 500°C

Fast SCR

High selectivity between NO_X and NH₃ below 400°C At 500°C, more NH₃ consumed via oxidation, but small zone

NO₂ decomposition

Why is performance better at 400 than 500?

NO ₂ Decomposition			
Temperature (°C)	NO outlet (ppm)	NO ₂ outlet (ppm)	
200	298	310	
300	283	330	
400	295	315	
500	449	146	

300 ppm NO, 300 ppm NO₂, 8% O₂, 5% CO₂, 2.5% H₂O

With ~1:1 NO₂:NO in, NO₂ decomposition begins between 400 and 500°C (500°C conversion similar to standard SCR)

Therefore, above 400°C, fast SCR can be limited by NO_2 decomposing, but admittedly NH_3 oxidation light-off as well

NO₂ SCR

NO₂ SCR analysis

Highly selective: NO_2 and NH_3 are consumed in a 1:1 ratio

Proposed NO₂ SCR: $2NH_3 + 2NO_2 \rightarrow N_2 + N_2O + 3H_2O$ (1) $4NH_3 + 3NO_2 \rightarrow 3.5N_2 + 6H_2O$ (2)

 NO_2/NH_3 data indicate NO_2 SCR occurs via reaction (1) not (2)

But the outlet N₂O concentration is lower than would be predicted

- Example, 600 ppm NH_3 , 600 ppm $NO_2 \rightarrow$ theoretically 300 ppm N_2O
- N₂O = 170 (300°C) and 130-140 ppm (400°C)
- N₂O does not decompose at these temperatures

NO₂ SCR analysis

How to justify the "imbalance"?

Some reaction must occur through NO₂ decomposition into NO, allowing fast SCR

$$2NO_2 \leftrightarrow 2NO + O_2 \tag{3}$$

$$NO + NO_2 + 2NH_3 \rightarrow N_2 + 3H_2O \qquad (4)$$

NO ₂ Decomposition		
Comp.	600 ppm NO ₂ , 8% O ₂ , 5% CO ₂ , 2.5% H ₂ O	
Temp (C)	NO ₂ outlet (ppm)	NO outlet (ppm)
300	597	13
400	446	134
500	395	140

NO:NO₂ ratio

Waterloo

 $NO_X = 600 \text{ ppm}, \text{ NH}_3 = 600 \text{ ppm}, 8\% O_2, 5\% CO_2, 2.5\% H_2O$

1:1 leads to best performance and least amount of catalyst required, followed by NO₂ SCR then standard *Question – reactions in parallel, series?*

NO:NOX ratio	L for 80% conversion
1	2.4
0	1.2
0.5	< 0.5

SCR at 300°C

April 19, 2011 CLEERS 2011

<u>NO:NO₂ \neq 1:1</u>

450 ppm NO, 150 ppm NO₂, 600 ppm NH₃, 8% O₂, 2.4% H₂O, 5% CO₂, balance N₂

With NO > NO₂, fast SCR reaction is followed by standard SCR \rightarrow reactions in series

<u>NO:NO₂ \neq 1:1</u>

450 ppm NO₂, 150 ppm NO, 600 ppm NH₃, 8% O₂, 2.4% H₂O, 5% CO₂, balance N₂, 300C

With NO < NO₂, fast SCR reaction and NO₂ SCR occur at the same time \rightarrow reactions in parallel

Conclusions

- Method proven for spatially resolving steady state SCR reactions
- With NO > NO₂, reactions in series, with NO < NO₂, reactions in parallel
- NO₂-SCR is complicated by simultaneous fast SCR
 → some NO₂ decomposes to NO
- Competition between NH₃ oxidation, SCR and NO oxidation critical for NH₃/NOX vs NH₃/O₂ selectivity

Effects of aging

- Catalyst Cu zeolite
- Hydrothermal (10% H₂O in air) aging at 500, 700 and 800°C
- Same FTIR sampling method in principle

Comparing spatially resolved data to "normal"

For the lightly and medium aged samples (500 and 700°C), the results are a good match

Comparing spatially resolved data to "normal"

For the highly aged sample (800°C), the results show a mis-match

Radial distribution check

- The mis-match between "normal" and the centered capillary is due to radial distribution in performance → the outer edge is more heavily damaged
- An estimate is ~ 20-25°C variation in T at 800°C
- XRD results at PNNL show loss of structure at 800°C Watershoo

Radial distribution check

• The mis-match is also apparent under fast SCR conditions

NO oxidation

- Little effect of aging on NO oxidation
- NO_2 TPD results do indicate that there are less sites available for NO_X adsorption

Standard SCR - performance

Lightly aged catalyst, NO = NH₃ = 400 ppm, $O_2 = 10\%$, H₂O = 5%, CO₂ = 7%

- Increasing T \rightarrow more NO_X conversion at front of catalyst, and more NH₃ conversion throughout
- Above 298°C, the outlet conversion decreases with increasing temperature \rightarrow NH₃ loss via oxidation
- At the inlet section, the extent of NH_3 oxidation is still small enough that NO conversion does increase with T

Fast SCR – aging effects

GHSV = 48,000 h⁻¹, NH₃ = 400 ppm, NO = 200 ppm, NO₂ = 200 ppm, O₂ = 10%, H₂O = 5%, CO₂ = 7%

- Although at the T extremes decreased conversion is observed in the mid-T range, only a small decrease is observed
- NH₃ loss via oxidation is smaller better competition between fast SCR and NH₃ oxidation

NO2 decomposition

- NO₂ decomposition extent decreases with aging

- this helps maintain fast SCR conditions (supporting the initial evidence of less loss in fast SCR activity with aging)

Low T NH3 oxidation

- With catalyst aging, in this temperature range, NH₃ oxidation extent decreased
- Monotonic increase through catalyst length

- At higher T, there is a different trend
 - lightly aged catalyst still has the highest NH₃ oxidation extent
 - but the 700°C aged catalyst results in less NH₃ oxidation relative to the highly aged sample

- With higher conversions, inflection in conversion noted – mass transfer

Varied NO:NO2 ratio

200°C, GHSV = 48,000 h⁻¹, NO_X = NH₃ = 400 ppm, O₂ = 10%, H₂O = 5%, CO₂ = 7%.

NO: NO₂ (ppm)

- NO and NO₂ conversions are affected similarly with aging
- Results also show reaction pathways
 - at 1:1, more NO₂ is converted \rightarrow parallel pathways occurring; NO₂ and fast SCR (as was the case for the Fe zeolite data presented previously)
 - Data also validate that with NO > NO₂, fast SCR occurs, then standard
 - (reactions in series)

University of

Conclusions (aging)

- Little effect on NO oxidation
- Similar effects on both standard and fast SCR
- NH₃ oxidation, at higher T, decreased with mild aging
- NO₂ decomposition decreased with aging

NH3 adsorption

- Typically, above 200°C, NH₃ is not available at downstream sites
 SCR and NH₃ oxidation
- Literature suggests surface is covered by NH₃ - dominant surface species (little to no NO_X is adsorbed)
- Passive SCR
 - Using an upstream TWC or NSR catalyst

NH3 adsorption

- Increasing exposure time increases amount adsorbed
- Overall, a relatively gradual adsorption pattern
- Data actually provide some info regarding catalyst washcoat properties as well

Acknowledgements

People who did the work

<u>John Luo</u>	Keith Christensen
<u>Peter Hou</u>	Prasanna Wijayakoon

People who paid for the work

National Sciences and Engineering Research Council of Canada (NSERC) Ontario Centres of Excellence (OCE) General Motors BASF

