<u>Comprehensive Characterization of Particulate</u> <u>Emissions from Advanced Diesel Combustion</u>

Prof. David E. Foster 10th CLEERS Meeting May 1-3, 2007

Acknowledgement

- Horiba
- Cummins Filtration
- BP-Amoco

- ORNL
- Dr. Terunao Kawai
- Prof. Takeyuki Kamimoto

Goal of Research

Particulate Instruments

- AVL Smoke Meter 415S (mass conc.)
- TSI SMPS (particle size distribution)
- R&P TEOM (mass conc.)
- Horiba MEXA 1370PM (chemical speciation)
- Teflon Gravimetric (mass conc.)
- NIOSH EC/OC (chemical speciation)
- Microwave Extraction Soot/SOF (chemical speciation)

LTC vs. Conventional Diesel PM

- High Load Conventional
- Medium Load Conventional
- Medium Load LTC, High Injection Pressure
- Medium Load LTC, Low Injection Pressure

GM-CRL 1.9L SCE

- •GM 1.9L SCE (0.47 L) w/ Re-entrant Bowl
- •Bore x Stroke: 82.0 mm x 90.4 mm
- •16.1:1 CR
- High speed diesel
- BOSCH CP3.3 Pump w/ CRIP2 Injector
 - •143° Spray Angle
 - •7 holes
 - •1800 Bar Rail Pressure
 - Up to 5 injections per cycle
- •Capability to >70% EGR (8% O_2)
- Currently used for LTC research

Dilution Conditions

- Two Stage Dilution
 - Perforated tube
 Ejector diluter
- PDT: ~Isothermal
- SDT: 100 ±4 °C

Case	PDT	SDT	PDR	SDR	TDR
1 - Conv, 10.25 bar IMEP, Hi RP	215 ±5 °C	100 ±4 °C	4.7	7	33
2 - Conv, 5.5 bar IMEP, Hi RP	120 ±5 °C	100 ±4 °C	3.6	7	25
3 - PCI, 5.5 bar IMEP, Hi RP	100 ±5 °C	100 ±4 °C	3	7	21
4 - PCI, 5.5 bar IMEP, Lo RP	100 ±5 °C	100 ±4 °C	2.8	7	20

- Steady state engine and sampling systems
- Insulated stainless steel transfer lines
- Filter face temperatures controlled to 47°C-50°C
- Exhaust gas sample underwent gradual decrease in temperature until capture and measurement
- Flow rate (filter face velocity) monitored during sampling
- Exhaust sampling point pressure controlled to 3 psig
- Checked variations in filter holder position

Engine Operating Conditions

	Engine Speed	IMEP	Rail Press.	Inj. Timing	O2 Intake	In. Tank T	In. Tank P	Exh. Tank T	Exh. Tank P
Case	[RPM]	[bar]	[bar]	[dATDC]	[%]	[°C]	[kPa_g]	[°C]	[kPa_g]
1	2500	10.25	1160	-12.8	16.3	64	83	435	105
2	2500	5.5	1160	-12.8	15.6	64	83	270	102
3	2500	5.5	1160	-38.5	9.7	65	68	270	84
4	2500	5.5	650	-38.5	8.7	65	66	270	81

Case 1 (Conv) :	Case 2 (Conv) :	Case 3 (LTC) :	Case 4 (LTC) :
•Medium Speed	•Medium Speed	•Medium Speed	•Medium Speed
•High Load	•Medium Load	•Medium Load	•Medium Load
•High Injection Pressure	•High Injection Pressure	•High Injection Pressure	•Low Injection Pressure
•Normal Injection Timing	•Normal Injection Timing	•Early Injection Timing	•Early Injection Timing
•30% EGR	•50% EGR	•60% EGR	•65% EGR

Pressure Trace

Heat Release Rate

2 Conv. Med. Load

- 3 LTC High Inj. Pressure
- 4 LTC Low Inj. Pressure

In-Cylinder Gas Temperature

STREETWARCH CA

UNIVERS

Gaseous Emissions

	Engine Speed	IMEP	Rail Press.	Inj. Timing	O2 Intake	In. Tank T	In. Tank P	Exh. Tank T	Exh. Tank P
Case	[RPM]	[bar]	[bar]	[dATDC]	[%]	[°C]	[kPa_g]	[°C]	[kPa_g]
1	2500	10.25	1160	-12.8	16.3	64	83	435	105
2	2500	5.5	1160	-12.8	15.6	64	83	270	102
3	2500	5.5	1160	-38.5	9.7	65	68	270	84
4	2500	5.5	650	-38.5	8.7	65	66	270	81

	Unburned HC	NOx	H2	02	CO	CO2
Case	[g/kg_fuel]	[g/kg_fuel]	[g/kg_fuel]	[g/kg_fuel]	[g/kg_fuel]	[g/kg_fuel]
1	0.92	4.44	0.13	1431.57	7.45	3169.31
2	1.28	2.47	0.11	3019.43	5.99	3149.28
3	5.01	0.07	2.27	564.14	120.97	2956.80
4	19.95	0.06	9.74	410.42	452.46	2388.58

Case 1 – Lowest HC and CO. Highest NOx and CO2.

Case 2 – Low HC and CO. High NOx and O2.

Case 3 – Low NOx and O2. High HC and CO.

Case 4 – Low NOx and O2. Highest HC, CO, and H2.

SMPS Size Distribution

Size and Mass Statistics

	Case	1	2	3	4		
Т	otal Number Conc. [#/cc] x10 ⁹	4.05	2.42	3.12	5.08		
Geometric Mean Particle Diameter [nm]		120	70.3	38.8	64.6		
Mode Diameter [nm]		126	76	40	69		
Teflon Filter Mass [g/kg_fuel]		2.4	0.39	0.08	0.47		
1	Conv. High Load						
2	Conv. Med. Load						
3	LTC High Inj. Pressure				13		
4	LTC Low Inj. Pressure	University of Wisconsin Engine Research Center					

Total PM Mass Emissions Index

Instruments:

AVL Smoke Meter 415S – Paper Opacity

TEOM – R&P Tapered Element Oscillating Microbalance

NIOSH - Sunset Laboratories Carbon Analyzer by <u>NIOSH 5040</u> Method with Tissuquartz filters

ORNL – Oak Ridge National Lab <u>TX40</u> Gravimetric Analysis

MEXA – Horiba MEXA 1370PM with Tissuquartz filters

Teflon – Gravimetric Analysis

MICRO – Oak Ridge National Lab TX40 SOF Microwave Extraction

University of	Wisconsin -	- Fnaine l	Research	Center
University Or	VVISCOUSIII -	- Engine r	research	center

1	Conv. High Load
2	Conv. Med. Load
3	LTC High Inj. Pressure
4	LTC Low Inj. Pressure

Total PM Mass Emissions Index

Total PM Mass Emissions Index (zoom)

Teflon Gravimetric Comparison

Filter Analysis

Color difference between PM from Conventional and LTC diesel combustion

Elemental Carbon Comparison

Filter Artifact Correction

OC Correction

$$OC_{Final} = OC_{Primary} - OC_{Secondary}$$

EC Correction

$$EC_{Final} = EC_{Primary} + EC_{Secondary}$$

At this time, only the NIOSH and MEXA filters were artifact corrected.

Normalized Chemical Speciation (Artifact Corrected, Except MICRO)

1

2

3

4

LTC Low Inj. Pressure

Organic Analysis

	Case	1	2	3	4
	Unburned HC [g/kg_fuel]	.92	1.28	5.01	19.95
	Maximum Combustion Temperature [K]	1772	1330	1612	1497
	Combustion Efficiency [%]	99.7	99.6	96.5	85.5
	NIOSH OC [%]	38	77	90	83
	Microwave Extracted SOF [%]	34	44	80	59
	<u>MEXA S</u> OF [%]	19	48	13	15
Conv. H	ligh Load				
Conv. N	/led. Load				
LTC Hig	h Inj. Pressure				

Artifact Magnitude

EC Artifact Magnitude

OC Artifact Magnitude

Artifact Magnitudes

Why the high EC on secondary filters for Cases 3 and 4?

- OC is being counted as EC during the transition from the OC measurement stage to EC measurement stage?
- EC is at minimum detection limit of instruments?
- OC is darker than conventional cases? (NIOSH laser uncertainty)
- New type of smaller particles aren't being filtered as well?

EC Artifact Compared to Particle Size

LTC and Conventional PM Differ

- Accumulation mode occurs at smaller particle sizes
- Very low PM concentrations
- High organic content
- High HC emissions do not track with adsorbed OC
- High EC positive artifact

- Same trends found among different instruments
- Low concentrations and higher OC content proved more difficult to measure
- AVL 415S tracks most closely with EC
- Artifact correction(s) are necessary to accurately assess total PM
- LTC and Conventional PM have very different concentrations, chemical composition, and size distributions