

Three Way Catalyst and Lean NO_x Trap Modeling for a Lean Burn SIDI Gasoline engine

Jian Gong, Christopher J. Rutland

Presented at CLEERS on April 12th, 2013

Engine Research Center University of Wisconsin-Madison

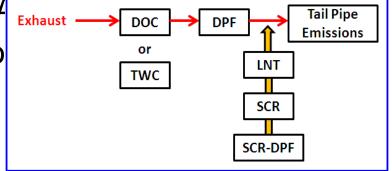
Outline

- Background and objectives
- DeNO_x modeling
 - Three way catalyst (TWC)
 - Lean NO_x trap (LNT)
- Experimental setup
- Simulation results
- Summary

Background

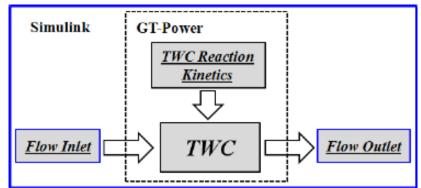
- Lean-burned SIDI engines show great benefit on fuel efficiency and CO₂ reduction

 Relatively higher nitrogen oxides (NO_x)
- Reduce dependency on conventional fuels
 - Flexible fuel (fuel neutral) engines (e.g. gasoline & ethanol blends)
- Worldwide tightening emission regulations for light duty vehicles
 - NO_x: Tier 2 Bin 5: 70 mg/mile;
 - LEV III: (NO_x+NMOG) 30 mg/mile in 2025;
 - Euro 5+: 96 mg/mile
- Passive ammonia SCR system


TWC

NH₂

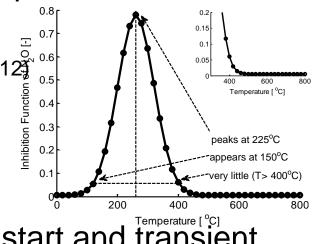
SCR


Objectives: Fuel-neutral AT Modeling

- Development of DeNO_x models with global kinetics
 - Reasonable accuracy over a wide range of (fuel neutral) engine exhaust conditions
 - NH₃ kinetics (global)
- Study the overall engine aftertreatment system (e.g. DeNO_x + DeSoot)
 - Interactions among different A
 - Feedback to the engine perfo

TWC Reaction Kinetics

- A single-channel, one-dimensional model
- Using GT-Power to solve conservation equations and chemistry
- 20 surface reactions (Ramanathan et al. 2011) (in Langmuir-Hinshelwood structure)
 - Include kinetics for oxidation of CO, HC, and NO to CO_2 , H_2O and NO_2
 - NO_x reduction reactions
 - Water-gas shift and steam
 - Oxygen storage reactions
 - NH₃ kinetics
 - Proposed N₂O kinetics

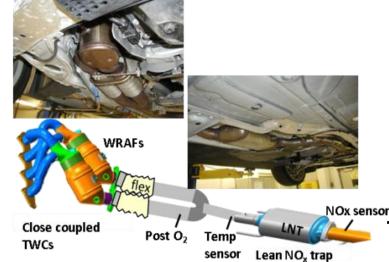


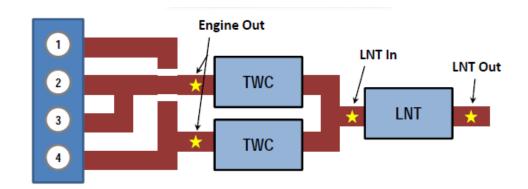
The detail of the TWC kinetics is reported in SAE paper 2013-01-1572

NH₃ and N₂O

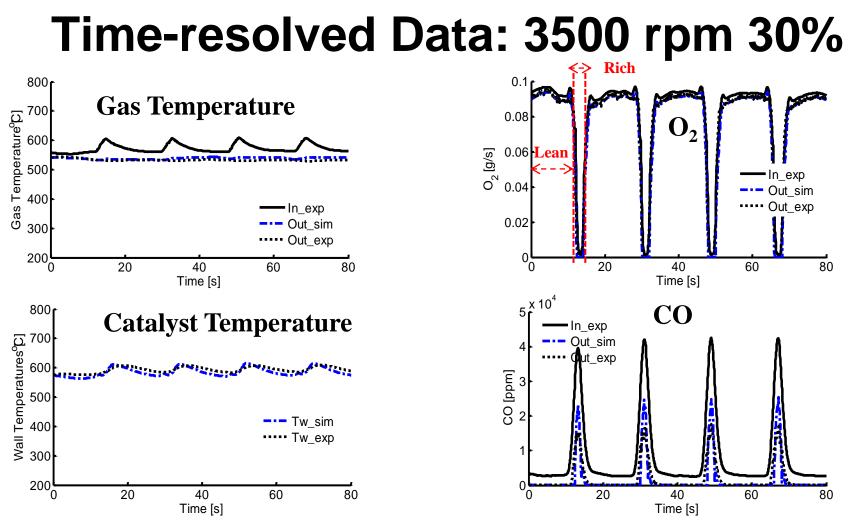
NH₃

- Commonly formed auries TWC/LNT Global mechanism (Ramanathan et al. 2012 $NO+2.5H_2 \rightarrow NH_3+H_2O$ $NO+1.5H_2O$ Commonly formed during the rich operation of

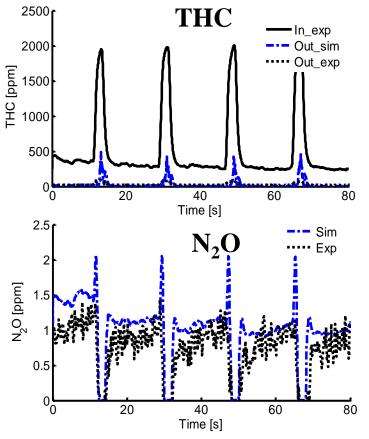


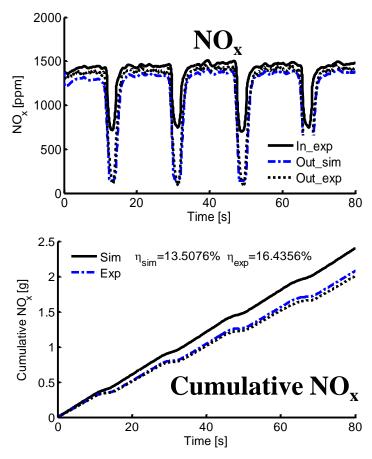

N_2O

- Predominantly formed during cold start and transient operations
 - A byproduct of NO_x reduction by HCs during light-off
- Global mechanism
 - NO+1/18C₃H₆ \rightarrow 0.5N₂O+1/6CO₂+1/6H₂O
 - $N_2O+1/9C_3H_6 \rightarrow N_2+1/3CO_2+1/3H_2O$


Experimental Setup

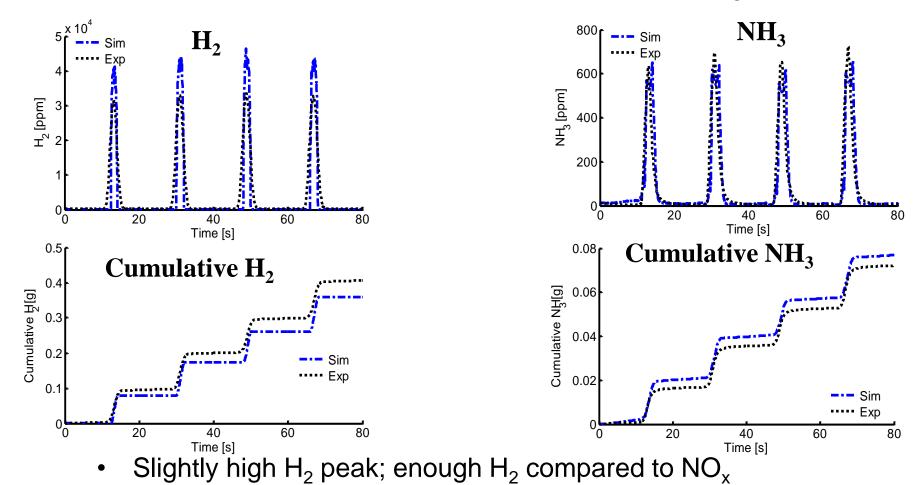
 Lean gasoline vehicle (BMW120i – 2.0L L4) on a chassis dynamometer at ORNL (Parks et al. 2011)




- Three different types of data for model validations
- Time-resolved (transient lean/rich cycle)
- Time-averaged (steady state lean/rich cycle)
- Transient driving cycle

- Gas & Catalyst temperatures match data
- O₂ and CO predictions are good

3500 rpm 30%: THC/NO_x/N₂O



- Good predictions of THC
- Transient N₂O is captured
- Instantaneous NO_x and accumulative NO_x are very comparable

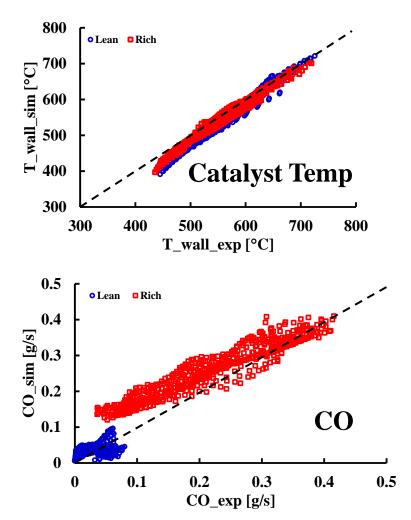
University of Wisconsin -- Engine Research Center

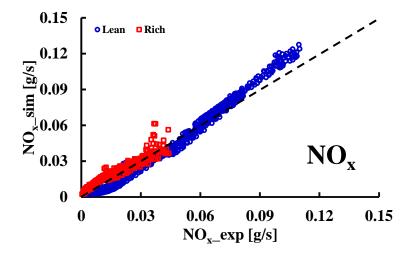
3500 rpm 30%: H₂ & NH₃

- Instantaneous NH₃ and accumulative NH₃ are very comparable
- NH₃/inlet NO_x = 0.072/2.4 ~ 3%

University of Wisconsin -- Engine Research Center

10

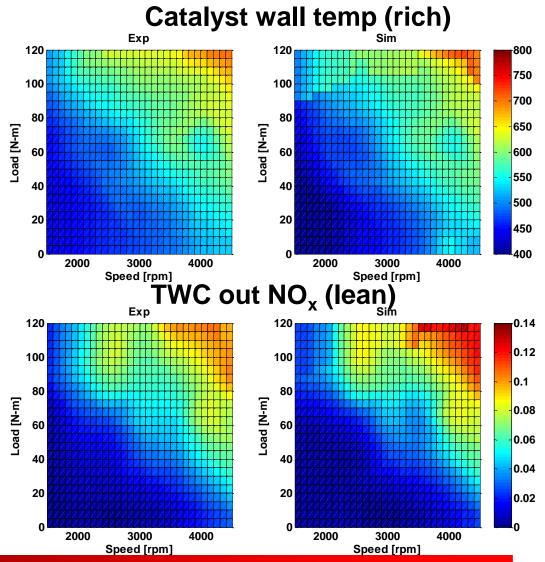

Time-averaged Data

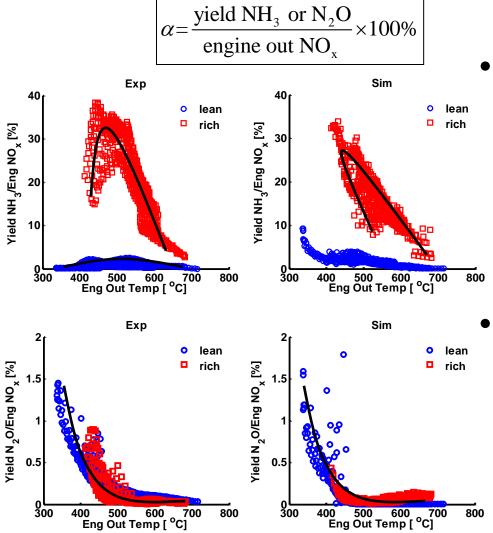

- Speed: 1500 to 4500, Load: 0~120 N·m
 - Total # of steady state operating conditions: 1550 (lean+rich)

Exhaust	Lean	Rich	3.5
Mass flow rate [g/s]	6.7 ~ 72.1	7.0 ~ 46.8	2.5 Lean period
Space velocity [1/s]	246.5 ~ 3737.4	291.0 ~ 2483.1	
Exhaust temp [°C]	336.6 ~ 716.4	412.7 ~ 681.7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Engine equiratio [-]	0.46 ~ 0.75	1.15 ~ 1.25	1
NO _x [ppm]	156 ~ 2527.6	482.6 ~ 1532.7	0.5-
CO [ppm]	264.6 ~ 4125.7	13937 ~ 34680	0 100 200 300 400 500 600
HC [ppm]	19.4 ~ 870.5	294.7 ~ 1176.4	Time [s]

No detailed instantaneous species concentrations
 Examining the kinetics in a wide window of exhaust conditions

Time-averaged Data

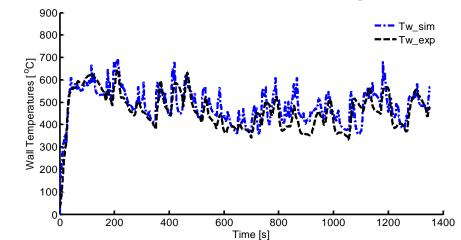


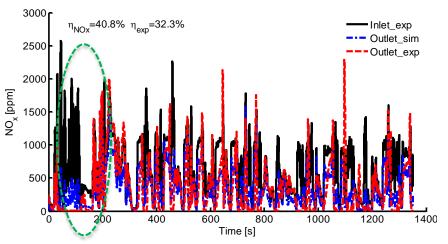

- Good agreement of temperatures and NO_x emissions at lean & rich
- Some discrepancy in CO
 - Consistent with underpredictions of temperatures

Phasing Comparisons

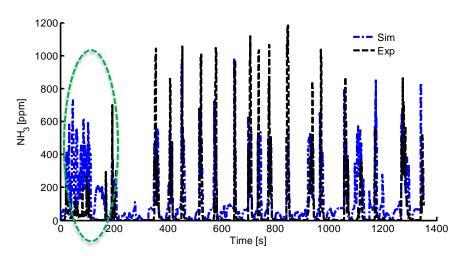
 A good agreement between predicted catalyst temperature, NO_x and experimental data

NH₃ & N₂O kinetics

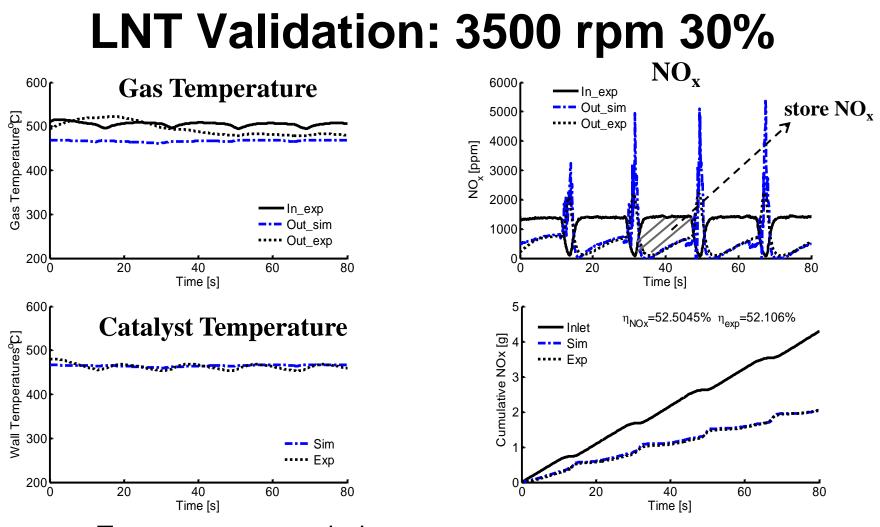

NH₃


- mainly formed at rich
- Some discrepancy at low exhaust
 - temperatures (<400 °C)
- Over-predicted at lean

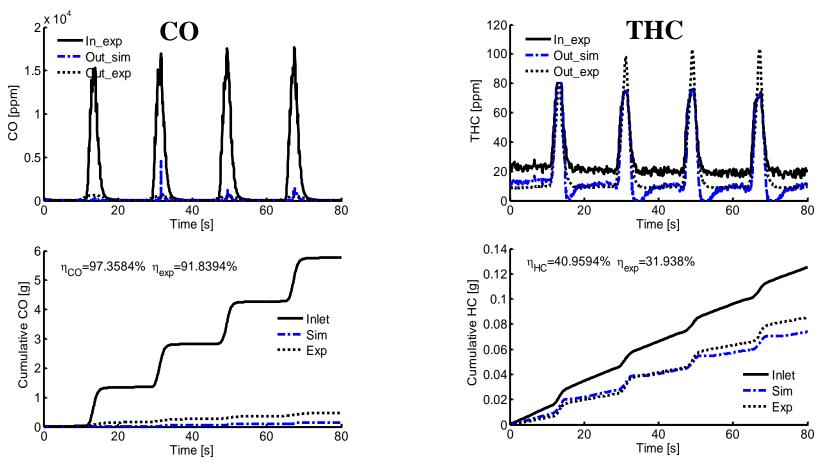
N₂O – Independent of AFR


- Significantly depends on exhaust temperature
 - Favors at low temp

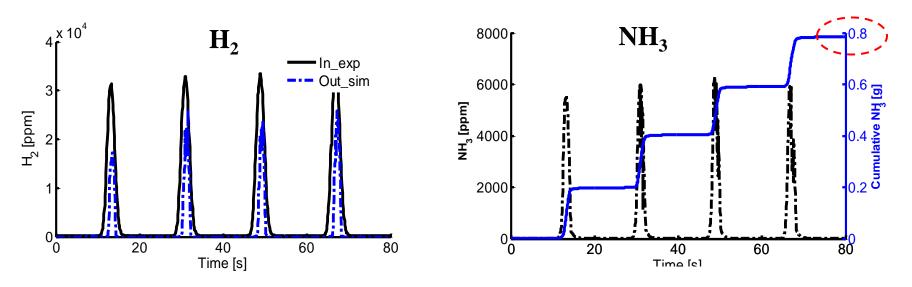
FTP Cycle (cold start)


- Model captures the trends of catalyst temp, NO_x and NH₃
- Higher NO_x and NH₃ in the first 200 seconds
 - Might be some NOx storage functionality in the TWC (not in the model)

LNT Kinetics


LNT kinetics				
1	$CO+0.5O_2 \rightarrow CO_2$			
2 $C_3H_6+4.5O_2 \rightarrow 3CO_2 + 3H_2O$		Oxidation reactions		
3 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$				
4	$H_2 + 0.5O_2 \leftrightarrow H_2O$			
5	NO+0.5 $O_2 \rightarrow NO_2$	NO NO ₂ transition		
6	$CO + NO \rightarrow CO_2 + 0.5N_2$	NO reduction		
7	$1/9C_{3}H_{6}+NO \rightarrow 1/3CO_{2}+1/3H_{2}O+1/2N_{2}$			
8	0.5BaCO ₃ +NO+0.75O ₂ →0.5Ba(NO ₃) ₂ +0.5CO ₂	NO adsorption		
9	0.5BaCO ₃ +NO ₂ +0.25O ₂ →0.5Ba(NO ₃) ₂ +0.5CO ₂	NO _x adsorption		
10	$0.5Ba(NO_3)_2+1.5CO \rightarrow 0.5BaCO_3+NO+CO_2$			
11	$Ba(NO_3)_2 + 1/3C_3H_6 + CO_2 \rightarrow BaCO_3 + 2NO + H_2O$	NO _x desorption		
12	$Ba(NO_3)_2 + 8H_2 + CO_2 \rightarrow 2NH_3 + BaCO_3 + 5H_2O$	NH ₃ formation from nitrates		
13	$NH_3 + 0.5Ba(NO_3)_2 + 0.5CO_2 \rightarrow N_2O + 0.5BaCO_3 + 1.5H_2O$	N ₂ O formation from nitrates		
14	$NH_3 + 4NO \rightarrow 2.5N_2O + 1.5H_2O$	N ₂ O formation		
15	$NO+2.5H_2 \rightarrow NH_3 + H_2O$	NH ₃ formation		
16	$NH_3+1.25O_2 \rightarrow NO+1.5H_2O$	NH_3 oxidation		
17	NH ₃ +1.5NO→1.25N ₂ +1.5H ₂ O	NH ₃ and NO		

• Total 17 reactions (Olsson et al. 2005)


- Temperatures match data
- NO_x adsorption & desorption & reduction are well captured

LNT Validation: CO & THC

- Slightly lower CO but with reasonable overall conversion rate
- Both instantaneous and accumulative HCs are good

LNT Validation: H₂ & NH₃

- A large amount of H₂ from TWC
- Peak NH_3 is higher than NO_x (6000 vs. 5000)
 - Generated from nitrates (different from TWC)
 - NH_3 /inlet NO_x = 0.8/4.2 ~ 20%

Summary

A TWC and a LNT model were developed with global kinetics and validated using experimental data from a lean burn DISI engine

- TWC
 - Validated over a wide range of exhaust conditions
 - Temperature dependences of the conversion rate of NH_3 and N_2O from NO_x were examined
- LNT
 - NO_x adsorption, desorption and reduction were well captured
 - NH₃ formation from LNT could be much more than TWC
 - Need NH₃ kinetics from nitrates

<u>The DeNO_x models are able to predict the temperatures</u> as well as species concentration with a good accuracy.

Acknowledgment

- This project is supported by General Motors as UW-GM Collaborative Research Laboratory (UW-CRL)
- GM: Kushal Narayanaswamy
- ORNL: Emissions & Catalysis Research Group
 - Monthly teleconferences
 - Todd Toops, James Parks, Stuart Daw, Vitaly Prikhodko, Zhiming Gao, Josh Pihl

Reference

- 1. Li, W., Perry, K., Narayanaswamy, K., Kim, C. et al., "Passive Ammonia SCR System for Lean-burn SIDI Engines," SAE Int. J. Fuels Lubr. 3(1):99-106, 2010, doi:10.4271/2010-01-0366.
- Kim, C., Perry, K., Viola, M., Li, W. et al., "Three-Way Catalyst Design for Urealess Passive Ammonia SCR: Lean-Burn SIDI Aftertreatment System," SAE Technical Paper 2011-01-0306, 2011, doi:10.4271/2011-01-0306.
- 3. Ramanathan K. and Sharma C. S., "Kinetic Parameters Estimation for Three Way Catalyst Modeling", Industrial & Engineering Chemistry Research, 50 (17), p. 9960:9979, 2011.
- 4. Ramanathan K., Sharma C. S., and Kim C. H., "Global Kinetics for Ammonia Formation and Oxidation Reactions in a Commercial Three-Way Catalyst," Industrial & Engineering Chemistry Research, 51, pp. 1198-1208, 2012.
- 5. Parks, J., Prikhodko, V., Partridge, W., Choi, J. et al., "Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration," *SAE Int. J. Fuels Lubr.* 3(2):956-962, 2010, doi:10.4271/2010-01-2267.
- 6. Parks J., et. al. CLEERS Teleconference, March 31, 2011
- 7. Toops, Todd J., Parks, James E., Pihl, Josh A., DiGiulio, Christopher D., Amiridis, Michael D. DEER Conference, October 18, 2012
- Olsson L., Blint R. J., and Fridell E., "Global Kinetic Model for Lean NOx Traps," Ind. Eng. Chem. Res., (44), pp. 3021-3032,2005.
- 9. Olsson L., Monroe D., and Blint R. J., "Global Kinetic Modelling of a Supplier Barium- and Potassium-Containing Lean NOx Trap," Ind. Eng. Chem. Res., (45), pp. 8883-8890, 2006.

Thank You !

For further questions, please contact:

Jian Gong gong3@wisc.edu

Mechanical Engineering Department University of Wisconsin-Madison 1008 Engineering Research Building 1500 Engineering Drive, Madison, WI 53706