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Outline 

• Background and objectives 

• DeNOx modeling 
– Three way catalyst (TWC) 

– Lean NOx trap (LNT) 

• Experimental setup 

• Simulation results 

• Summary 
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Background 

• Lean-burned SIDI engines show great benefit on 

fuel efficiency and CO2 reduction 
– Relatively higher nitrogen oxides (NOx)  

• Reduce dependency on conventional fuels 
– Flexible fuel (fuel neutral) engines (e.g. gasoline & 

ethanol blends) 

• Worldwide tightening emission regulations for 

light duty vehicles  
– NOx: Tier 2 Bin 5: 70 mg/mile;  

– LEV III: (NOx+NMOG) 30 mg/mile in 2025;  

– Euro 5+: 96 mg/mile  

• Passive ammonia SCR system 

 

TWC SCR 

NH3 
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Objectives: Fuel-neutral AT Modeling 

• Development of DeNOx models with global 

kinetics 
– Reasonable accuracy over a wide range of (fuel 

neutral) engine exhaust conditions  

– NH3 kinetics (global) 

• Study the overall engine aftertreatment system 

(e.g. DeNOx + DeSoot) 
– Interactions among different AT devices  

– Feedback to the engine performance 
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TWC Reaction Kinetics 

• A single-channel, one-dimensional model 

• Using GT-Power  to solve conservation equations 

and chemistry 

• 20 surface reactions (Ramanathan et al. 2011) ( in 

Langmuir-Hinshelwood structure) 
– Include kinetics for oxidation of CO, HC, and NO to CO2, 

H2O and NO2 

– NOx reduction reactions 

– Water-gas shift and steam reforming reactions  

– Oxygen storage reactions 

– NH3 kinetics 

– Proposed N2O kinetics 

 
The detail of the TWC kinetics is reported in SAE paper 2013-01-1572 
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NH3 and N2O 
NH3 

– Commonly formed during the rich operation of 

TWC/LNT 

– Global mechanism (Ramanathan et al. 2012) 

• NO+2.5H2  NH3+H2O 

• NH3+1.25O2  NO+1.5H2O 

• NH3+1.5NO  1.25N2+1.5H2O 

N2O 
– Predominantly formed during cold start and transient 

operations 
• A byproduct of NOx reduction by HCs during light-off 

– Global mechanism 
• NO+1/18C3H6  0.5N2O+1/6CO2+1/6H2O 

• N2O+1/9C3H6  N2+1/3CO2+1/3H2O 
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Experimental Setup 

• Lean gasoline vehicle (BMW120i – 2.0L L4) 

on a chassis dynamometer at ORNL (Parks et al. 

2011) 

 

 

 

 

 

 

 

 

 

 

Three different types of data for model 

validations  
• Time-resolved (transient lean/rich cycle) 

• Time-averaged (steady state lean/rich cycle) 

• Transient driving cycle  
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Time-resolved Data: 3500 rpm 30% 

• Gas & Catalyst temperatures match data 

• O2 and CO predictions are good 
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3500 rpm 30%: THC/NOx/N2O 

• Good predictions of THC 

• Transient N2O is captured 

• Instantaneous NOx and accumulative NOx are very comparable 
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3500 rpm 30%: H2 & NH3 

• Slightly high H2 peak; enough H2 compared to NOx 

• Instantaneous NH3 and accumulative NH3 are very comparable 

• NH3/inlet NOx = 0.072/2.4 ~ 3% 
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Time-averaged Data 

• Speed: 1500 to 4500, Load: 0~120 Nm 
– Total # of steady state operating conditions: 1550 

(lean+rich) 

 

 

 

 

 

 

 

– No detailed instantaneous species concentrations 
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Time-averaged Data 

• Good agreement of 

temperatures and NOx 

emissions at lean & rich  

• Some discrepancy in CO 

– Consistent with under-

predictions of temperatures  
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Phasing Comparisons 

 

• A good agreement 

between predicted 

catalyst 

temperature, NOx 

and experimental 

data 
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NH3 & N2O kinetics 

• NH3 

– mainly formed at rich 

– Some discrepancy at 

low exhaust 

temperatures (<400 C) 

– Over-predicted at lean 

• N2O 
– Independent of AFR 

– Significantly depends on 

exhaust temperature 
• Favors at low temp 
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FTP Cycle (cold start) 

• Model captures the trends of 

catalyst temp, NOx and NH3 

• Higher NOx and NH3 in the 

first 200 seconds 
– Might be some NOx storage 

functionality in the TWC (not in 

the model) 
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LNT Kinetics 

• Total 17 reactions (Olsson et al. 2005) 

 

LNT kinetics 

1 CO+0.5O2CO2 

Oxidation reactions 
2 C3H6+4.5O23CO2 + 3H2O 

3 C3H8+ 5O23CO2 + 4H2O 

4 H2 + 0.5O2H2O 

5 NO+0.5 O2NO2 NO NO2 transition 

6 CO + NOCO2 + 0.5N2 
NO reduction 

7 1/9C3H6+NO1/3CO2+1/3H2O+1/2N2 

8 0.5BaCO3+NO+0.75O20.5Ba(NO3)2+0.5CO2 
NOx adsorption 

9 0.5BaCO3+NO2+0.25O20.5Ba(NO3)2+0.5CO2 

10 0.5Ba(NO3)2+1.5CO0.5BaCO3+NO+CO2 
NOx desorption 

11 Ba(NO3)2+1/3C3H6+CO2BaCO3+2NO+H2O 

12 Ba(NO3)2+8H2+CO2 2NH3+BaCO3+5H2O NH3 formation from nitrates 

13 NH3+0.5Ba(NO3)2+0.5CO2N2O+0.5BaCO3+1.5H2O N2O formation from nitrates 

14 NH3+4NO2.5N2O+1.5H2O N2O formation  

15 NO+2.5H2NH3+H2O NH3 formation 

16 NH3+1.25O2NO+1.5H2O NH3 oxidation 

17 NH3+1.5NO1.25N2+1.5H2O NH3 and NO  
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LNT Validation: 3500 rpm 30% 

• Temperatures match data  

• NOx adsorption & desorption & reduction are well captured 

 

0 20 40 60 80
200

300

400

500

600

Time [s]

W
a

ll 
T

e
m

p
e

ra
tu

re
s
 [o
C

]

 

 

Sim

Exp

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

Time [s]

N
O

x [
p

p
m

]

 

 
In_exp

Out_sim

Out_exp

0 20 40 60 80
200

300

400

500

600

Time [s]

G
a

s
 T

e
m

p
e

ra
tu

re
 [o
C

]

 

 

In_exp

Out_sim

Out_exp

Gas Temperature 

Catalyst Temperature 

NOx 

store NOx 

0 20 40 60 80
0

1

2

3

4

5

Time [s]
C

u
m

u
la

ti
v
e

 N
O

x
 [
g

]


NOx

=52.5045%  
exp

=52.106%

 

 

Inlet

Sim

Exp



Engine Overview - University of Wisconsin -- Engine Research Center 18 

LNT Validation: CO & THC 

• Slightly lower CO but with reasonable overall conversion rate 

• Both instantaneous and accumulative HCs are good 
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LNT Validation: H2 & NH3 

• A large amount of H2 from TWC 

• Peak NH3 is higher than NOx (6000 vs. 5000) 
– Generated from nitrates (different from TWC) 

– NH3/inlet NOx = 0.8/4.2 ~ 20% 
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Summary 

A TWC and a LNT model were developed with global 

kinetics and validated using experimental data from a 

lean burn DISI engine 

• TWC 
– Validated over a wide range of exhaust conditions 

– Temperature dependences of the conversion rate of NH3 

and N2O from NOx were examined 

• LNT 
– NOx adsorption, desorption and reduction were well captured 

– NH3 formation from LNT could be much more than TWC 

– Need NH3 kinetics from nitrates 

 

The DeNOx models are able to predict the temperatures 

as well as species concentration with a good accuracy. 
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Thank You ! 

 
For further questions, please contact: 

Jian Gong 

gong3@wisc.edu 

Mechanical Engineering Department 

University of Wisconsin-Madison 

1008 Engineering Research Building  

1500 Engineering Drive, Madison, WI 53706 


