

From zero to four-dimensional aftertreatment models: needs and challenges

Dr. Grigorios C. Koltsakis

Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki Greece

Dr Onoufrios Haralampous

Exothermia SA, Greece

Contents

- How many dimensions we need for after-treatment modeling?
- Definitions fundamentals
- ✓ DPF modeling
 - Significance intra-layer modeling
 - Channel and filter scale
 - "3-dimensional" effects
 - DOC, LNT, SCR integration in wall-flow DPFs
- Flow-through catalyst modeling
 - Flow maldistribution
 - Reductant maldistribution
- Integrated 1d/3d exhaust system modeling
 - Components in series
 - Components in parallel

Fundamentals

Definitions and modeling scales in the case of wall-flow DPF modeling

The challenge of catalyzed DPF modeling Mixed reactor

Mass-transfer reaction "channel flow" Mass-transfer "wall flow" reaction reaction

Exothermia

14-May-08

Species balance

Species equations quasi-steady, $k_w = infinite (Y_w = Y_f)$

Exothermia

Haralampous O. A., Koltsakis G. C.: Industrial & Engineering Chemistry Research, Vol.43, Issue 4, p. 875-883, 2004.

Species equations quasi-steady, $k_w = infinite$, $k_I = k_{II} = 0$, $D_g^* = 0$

Bissett E. J., *Chemical Engineering Science* Vol. 39, Nos 7/8, pp. 1233-1244 (1984). "1-d model" Bissett E. J., Shadman F., *AIChE Journal* (Vol31, No5), p. 753, May 1985. "0-d model"

1AT, 8

Exothermia

14-May-08

Energy balance

14-May-08

Bissett E. J., *Chemical Engineering Science* Vol. 39, Nos 7/8, pp. 1233-1244 (1984). "1-d model" Koltsakis G. C., Stamatelos A. M., *Ind. Eng. Chem. Res.*, 1997 Vol. 36 p. 4155-4165. "catalytic 1-d model, modified energy balance"

Bissett E. J., Shadman F., *AIChE Journal* (Vol31, No5), p. 753, May 1985. "0-d model" Koltsakis G. C., Stamatelos A. M., *Ind. Eng. Chem. Res.*, 1996, 35, 2-13 "catalytic 0-d model"

14-May-08

Koltsakis G. C., Stamatelos A. M., Ind. Eng. Chem. Res., 1997, Vol. 36 p. 4155-4165.

14-May-08

Intra-layer dimension in DPF modeling

Soot filtration and pressure drop effects

Intra-layer dimension Filtration efficiency and soot accumulation

Pressure drop "hysteresis" Wall-scale effects

16

Incoming soot does not re-penetrate the wall. The correlation of pressure drop vs soot loading is depends on partial regeneration history.

14-May-08

Pressure drop hysteresis effect

Following an incomplete regeneration, the cake soot does not allow the incoming soot topenetrate the wall. The pressure drop correlation with soot loading changes dramatically.

14-May-08

11th CLEERS Workshop

Exothermia

17

Channel and filter scale effects on flow & soot distribution

Soot accumulation Filter scale

Example : Coupling of *axitrap*[™] with Adapco Star-CD

Transient soot accumulation (bottom) and flow redistribution (top) in an asymmetric DPF geometry

Knowledge of soot accumulation is important for pressure drop and regeneration predictions

Exothermia

14-May-08

O₂ transfer effects on soot limit calculation

Q₂ transfer from channel gas to soot surface

Exothermia

21

Due to concentration gradient, O₂ is transferred from the axial flow to the soot layer and increases availability and reaction rates

Importance of O₂ transfer for the prediction of filter temperature

Test conditions: Gas burner, cordierite filter, T_{in}=600°C

Ignoring O₂ mass-transfer effects (diffusive-convective) leads to serious under-prediction of peak temperatures

NO₂ transfer effects on CDPF modeling

Back-diffusion NO₂ "recycling" WLNT modeling WSCR modeling

"Passive" regeneration via NO₂ in catalyzed filters

WLNT (DPNR) simulation example Lean-rich cycle at 350°C

NOx computed **- NOx** measured 300 Rich Lean Lean 250 Concentration [ppm] 150 100 50 0 50 60 70 80 90 100 110 120 130 140 150 Time [sec]

Experimental data from engine testing at IAV GmbH

11th CLEERS Workshop

LAT 25

Intra-layer NO₂ profiles t=114 s

DOC functionality

CO, HC oxidation DOC replacement Catalyst zoning

Catalyzed DPF simulation Catalyst zoning (Precious Metal saving concept)

✓ Uncoated DPF

🗲 "Axial" zoning

- More PGM in front part
- Better cold-start performance

- More catalyst close to soot layer
- Better passive regeneration performance

Transport/reaction coupling necessary to account for catalyst zoning

Uncatalyzed wall Catalyzed with high PGM Catalyzed with low PGM Soot layer

14-May-08

11th CLEERS Workshop

Computed concentration profiles in catalyzed filters @ T=150°C

Exothermia

31

14-May-08

Computed concentration profiles in catalyzed filters @ T=150°C

Exothermia

32

14-May-08

Computed concentration profiles in catalyzed filters @ T=150°C

Exothermia

33

14-May-08

3-d effects

Heat transfer Flow Stress analysis

3-d DPF regeneration simulation Sources of "3-dimensionality"

LAT

35

"3-d effects"

Heat losses, segmentation, asymmetric inlet temperature/flow, oval DPF geometry

Oval geometries

Forced regeneration 3-d vs 1-d simulation results

Exothermia

dots: measurement

lines: simulation

14-May-08

LAT 37

Model validation vs experimental data (LAT & NGK: SAE 2005-01-0953)

Exothermia

14-May-08

TC4-6

Model validation – centerline channel Initial soot loading: 8 g/l

7 Exothermia

39

14-May-08

Model validation – 8 g/l Filter exit – 45° plane

Accuracy assessment FBC system - Initial soot loading: 6 g/l

14-May-08

Accuracy assessment FBC system - Initial soot loading: 8 g/l

42

14-May-08

Segmentation effects Simulation results with same protocol, time=80 s

44

14-May-08

DOC modeling

Multi-dimensional effects for the case of driving cycle performance prediction

HC prediction instantaneous emissions

Pontikakis G. N., Koltsakis G. C., Stamatelos A. M., Noirot R., Agliany Y., Colas H., Versaevel Ph., Bourgeois C.: Experimental and Modeling Study on Zeolite Catalysts for Diesel Engines, Topics in Catalysis, 6/17, Nos. 1-4, September 2001, pp. 329-335.

DOC model sensitivity

	CO (efficiency [%])				HC (efficiency [%])			
	Ι	II	III	total	Ι	II	III	total
Measurement	11.4	32.1	99.1	42.1	45.3	55.1	91.8	62.5
Model results	2.5	32.5	99.6	40.3	46.6	56.7	86.9	62.3
Assumptions								
Uniform flow distribution	2.7	38.2	100	43.4	46.9	64.6	93.0	68.1
HC adsorption neglected	2.4	31.5	99.5	39.7	3.8	34.4	87.1	41.3
2 HC species (propene/propane)	2.4	32.2	99.6	40.1	7.3	50.6	83.7	49.6
H ₂ O adsorption neglected	2.9	35.5	99.5	41.9	46.8	59.0	87.1	63.6

Pontikakis G. N., Koltsakis G. C., Stamatelos A. M., Noirot R., Agliany Y., Colas H., Versaevel Ph., Bourgeois C.: Experimental and Modeling Study on Zeolite Catalysts for Diesel Engines, Topics in Catalysis, 6/17, Nos. 1-4, September 2001, pp. 329-335.

SCR modeling

Exhaust system layout

Exothermia

3-D Scan of Vehicle underbody & boot by IAV; SCR catalyst designed to fit in existing Vehicle Package

SCR catalyst simulation NEDC NO_x predictions

Exothermia

14-May-08

Effect of NH₃ inlet profile Simulation study

Exothermia

52

Assumption: zero NH₃ storage capacity

7Exothermia

14-May-08

Assumption: zeolite-based with NH₃ storage capacity, *no pre-adsorbed NH₃*

Exothermia

14-May-08

Assumption: zeolite-based with NH₃ storage capacity, *with pre-adsorbed NH₃*

14-May-08

11th CLEERS Workshop

55

Complete exhaust line simulation

Simulation modules

Exothermia

axisuite											
software module	functionality / reactor type	3-way catalyst	diesel oxidation catalyst	lean NO _x trap	selective catalytic reduction	diesel particulate filter					
axicat	flow-through	V	V	V	V	n/a					
axitrap	wall-flow	n/a	V	V	V	V					
axifoam	deep-bed	n/a	V	V	V	V					
axiheat	exhaust pipe	single-wall	double-wall	insulating material	flanges	reacting flow					

14-May-08

System simulation

Complete system simulation: Soot limit with respect to SCR thermal loading

Koltsakis et al., FAD Conference-2007 (LAT-IAV GmbH-Exothermia)

3-d system temperature simulation "Worst-case" DPF regeneration case

Parallel DPF systems

Illustrative example: 2 branches Identical DPFs, different flow conditions

- As a simple illustration case, we consider two DPFs with different cones. DPF-1 cone ensures uniform flow. DPF-2 cones result in significant maldistribution.
- How will the flow and soot be distributed during loading?
- ✓ Will there be any differences during regeneration?

Parallel DPFs simulation in MATLAB/Simulink using axisuite S-functions

14-May-08

Flow division and soot accumulation during loading mode

Parallel filters Regeneration simulation

11th CLEERS Workshop

Conclusions

- Depending on the application the detail of modeling number of model dimensions has to be correctly identified.
- ✓ For the case of DPF modeling
 - intra-wall dimension is important for filtration/pressure drop and catalyzed reactions modeling
 - 2-d and 3-d DPF discretization is necessary for regeneration modeling
- Flow-through catalyst modeling
 - 2-d and 3-d modeling is necessary to account for flow/heat maldistribution
 - For SCR applications, multi-dimensional modeling is crucial for NH₃calculations
- Parallel systems should be modelled concurrently, to account for the interactions.

Thank you very much for your attention!

Grigorios Koltsakis grigoris@auth.gr http://lat.eng.auth.gr

www.exothermia.com

