# Modeling Studies of the Dual-Layer LNT/SCR Monolithic Catalyst

**Mike Harold** 

### **Acknowledgements:**

### Bijesh Shakya, Yi Liu, Yang Zheng, Vemuri Balakotaiah, Dan Luss









### Motivation



http://solar.calfinder.com/blog/wp-content/uploads/2009/12/toxic-city-houston.jpg http://images.google.com/imgres?imgurl=http://www.utexas.edu/research/ceer/texaqs/images/downtown\_view2



### Background

### Technologies for Lean NO<sub>x</sub> Reduction

*NO<sub>x</sub> Storage and Reduction (NSR)* 



#### Selective Catalytic Reduction (SCR)



Fe- or Cu- Zeolite



### Background

Technologies for Lean NO<sub>x</sub> Reduction



| LNT:<br>SCR:    | $\frac{NO + 4H_2}{NO + NH_3}$ | + 0.750 | $2 \rightarrow NH$<br>$2 \rightarrow N_2$ | 3 + 2.5H <sub>2</sub> 0<br>+ 1.5H <sub>2</sub> 0 |
|-----------------|-------------------------------|---------|-------------------------------------------|--------------------------------------------------|
| <b>OVERALL:</b> | $2NO + 4H_2$                  | + 0     | $\mathbf{N}_2 \rightarrow \mathbf{N}_2$   | + 4H <sub>2</sub> 0                              |

LNT does not need a highly effective NSR catalyst in the combined NSR/SCR application



### Background

Technologies for Lean NO<sub>x</sub> Reduction



### **Compare:**



### LNT/SCR: H<sub>2</sub> Reductant With CO<sub>2</sub> & H<sub>2</sub>O

Substrate

LNT1





### LNT/SCR: H<sub>2</sub> **Reductant With** $CO_{2} \& H_{2}O$

LNT1

LNT1







# Conduct simulation studies of dual-layer LNT/SCR monolithic catalyst using global kinetics to

(i) elucidate the reactor behavior

(ii) identify optimal catalyst design & reactor operating strategies



### Approach

- Develop & validate global kinetic model for low dispersion LNT catalysts
- >Adopt kinetic model for SCR from the literature \*
- >Use LNT/SCR dual layer reactor model to study:
  - Effect of washcoat loading
  - Effect of temperature
  - Compare dual layer design to dual brick design



### Outline

- Model development (Multiple length-time scales, model equations)
- Model tuning and validation for LNT (LNT reactions, compare with experiments)
- Review SCR model<sup>‡</sup> (SCR reactions, validations)
- Simulation results of dual layer LNT/SCR (concentration profiles, effect of washcoat/catalyst loading, effect of temperature, compare with brick config)
- Conclusions

### Multiple Length/Time Scales



### **Model Development**

### Model equations

#### **Fluid phase equation**

$$\frac{\partial x_{fm,j}}{\partial t} = -\frac{u}{u} \frac{\partial x_{fm,j}}{\partial z} - \frac{k_{me,j}(z)}{R_{\Omega_1}} (x_{fm,j} - x_{s,j})$$

$$(0 < z < L)$$



Washcoat equation

$$\mathcal{E}_{wc} \frac{\partial x_{wc,j}}{\partial t} = \frac{\partial}{\partial y} \left( D_{e,j} \frac{\partial x_{wc,j}}{\partial y} \right) + \frac{1}{C_{tm}} \sum_{r=1}^{rxn} \mathcal{G}_{jr} R_r(\underline{x_{wc}}, \underline{\theta}, T)$$

#### Site balance

$$\frac{\partial \theta_k}{\partial t} = \frac{1}{C^o} \sum_{r=1}^{rxn} \vartheta_{kr} R_r(\underline{x}_{wc}, \underline{\theta}, T)$$



### Outline

- ✤ Model development (Multiple length-time scales, model equations) ✓
- Model tuning and validation for LNT
- Review SCR model<sup>‡</sup> (SCR reactions)
- Simulation results of dual layer LNT/SCR (concentration profiles, effect of washcoat/catalyst loading, effect of temperature)
- Summary and conclusions



### **LNT – Reactions and Catalyst**

| NO oxidat                                                                     | ion                     | 1.                              |                                                                                      |                                    | NO+ 0.5 $O_2 \rightarrow$               | Ν | 02                                        |                 |
|-------------------------------------------------------------------------------|-------------------------|---------------------------------|--------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|---|-------------------------------------------|-----------------|
| NO storage i                                                                  | in the                  | 2.                              | 2                                                                                    | 2 NO + 1.                          | $5 O_2 + BaO_{(f)} \rightarrow$         | B | a(NO <sub>3</sub> ) <sub>2 (f)</sub>      |                 |
| presence o                                                                    | <b>f O</b> <sub>2</sub> | 3.                              | 2                                                                                    | 2 NO + 1.5                         | $50_2 + \mathbf{BaO}_{(S)} \rightarrow$ | B | a(NO <sub>3</sub> ) <sub>2 (S)</sub>      |                 |
| NO Storage                                                                    |                         | 4.                              | 2                                                                                    | NO <sub>2</sub> + 0.5              | $5 O_2 + BaO_{(f)} \rightarrow$         | B | a(NO <sub>3</sub> ) <sub>2 (f)</sub>      |                 |
| NO <sub>2</sub> storage                                                       | iye                     | 5.                              |                                                                                      | 3                                  | $NO_2 + BaO_{(s)} \rightarrow$          | B | a(NO <sub>3</sub> ) <sub>2 (s)</sub>      | + NO            |
| Nitrate reduc                                                                 | tion by                 | 6.                              |                                                                                      | Ba(N                               | $(D_3)_{2(f)} + 3 H_2 \rightarrow$      | B | $aO_{(f)} + 2 N$                          | $0 + 3 H_2 0$   |
| $H_2$                                                                         |                         | 7.                              | $Ba(NO_3)_{2(s)} + 3 H_2 \rightarrow BaO_{(s)} + 2 NO + 3 H_2O$                      |                                    |                                         |   |                                           | $0 + 3 H_2 0$   |
| Nitrate reduc                                                                 | tion by                 | 8.                              | Ba                                                                                   | (NO <sub>3</sub> ) <sub>2(f)</sub> | + 10/3 NH <sub>3</sub> $\rightarrow$    | B | a0 <sub>(f)</sub> + 8/3                   | $N_2 + 5 H_2 O$ |
| NH <sub>3</sub>                                                               |                         | 9.                              | Ba                                                                                   | $(NO_3)_{2(s)}$                    | + 10/3 NH <sub>3</sub> $\rightarrow$    | B | $aO_{(s)} + 8/3$                          | $N_2 + 5 H_2 O$ |
| Pt catalyzed NO<br>reduction                                                  |                         | 10.                             |                                                                                      |                                    | $2 \text{ NO} + \text{H}_2 \rightarrow$ | Ν | $_{2}$ <b>0</b> + H <sub>2</sub> <b>0</b> |                 |
|                                                                               |                         | 11.                             | $NO + 5/2 H_2 \rightarrow NH_3 + H_2O$                                               |                                    |                                         |   |                                           |                 |
|                                                                               |                         | 12.                             | $3/2 \text{ NO} + \text{NH}_3 \rightarrow 5/4 \text{ N}_2 + 3/2 \text{ H}_2\text{O}$ |                                    |                                         |   |                                           |                 |
| <i>NH</i> <sub>3</sub> adsorption and 13.                                     |                         | $NH_3 + X \rightarrow NH_3 - X$ |                                                                                      |                                    |                                         |   |                                           |                 |
| <i>consumption</i> 14. $NH_3 - X + 3/4 O_2 \rightarrow 1/2 N_2 + 3/2 H_2 O +$ |                         |                                 | $2 H_2 O + X$                                                                        |                                    |                                         |   |                                           |                 |
| Sample                                                                        |                         | nle                             |                                                                                      | Pt (%)                             | Pt dispersion <sup>0</sup>              | 6 | Ba(1%)                                    |                 |
| Sample                                                                        |                         | ipic                            |                                                                                      | 10]                                | i cuispei sion /                        | U | Dao (70)                                  | 15              |
|                                                                               | Pt/BaC                  | )/Al <sub>2</sub> (             | $O_3$                                                                                | 2.48                               | 8                                       |   | 13.0                                      | 15              |

### LNT – Model vs Exp<sup>‡</sup> - Storage





#### Conditions: Lean inlet: 500 ppm NO + 5% $O_2$ GHSV: 60,000 hr<sup>-1</sup> (based on monolith volume) (20 ms @ 300°C)

#### *Catalyst:* 2 cm long; 28 channels 400 cpsi; 30 μm washcoat

## LNT – Model vs Exp<sup>‡</sup> – Cycling



*GHSV:* 60,000 hr<sup>-1</sup> (based on monolith volume)

<sup>‡</sup> Shakya et al. / Catalysis Today 184 (2012) 27-42

30 µm washcoat

# ULL LNT – Model vs Exp<sup>‡</sup> - Regeneration



Conditions: NOx stored:  $1.5 \times 10^{-5}$  moles Rich inlet: 1500 ppm H<sub>2</sub> – 200s GHSV: 60,000 hr<sup>-1</sup> (based on monolith volume)

2 cm long; 28 channels 400 cpsi; 30 μm washcoat

Catalyst:

<sup>‡</sup> R.D. Clayton PhD Dissertation University of Houston 2008



### LNT – Model vs Exp<sup>‡</sup>

### Effect of Rich phase duration



**Conditions: Lean inlet:** 500 ppm NO + 5%  $O_2$  in bal Ar / Duration: 60s **Rich inlet:** 5000 ppm H<sub>2</sub> in bal Ar / Duration: 5-30s

#### Model accurately predicts the effect of rich phase duration on conversion and selectivity



### Outline

- ✤ Model development (Multiple length-time scales, model equations) ✓
- ✤ Model tuning and validation for LNT (review of experimental results, LNT reactions) ✓
- Review SCR model<sup>‡</sup> (SCR reactions)
- Simulation results of dual layer LNT/SCR (concentration profiles, effect of washcoat/catalyst loading)
- Summary and conclusions

<sup>‡</sup> Metkar et. al. 2012 / Chem. Eng. Sci. / doi: http://dx.doi.org/10.1016/j.ces.2012.09.008

# 叫

### SCR<sup>‡</sup> – Reactions and Catalyst

| NH <sub>3</sub> adsorption /<br>desorption | 1. | NH <sub>3</sub> + S -                             | $\rightarrow$ | NH <sub>3</sub> -S           |
|--------------------------------------------|----|---------------------------------------------------|---------------|------------------------------|
| NH <sub>3</sub> oxidation                  | 2. | $2NH_3-S + 1.5O_2$ -                              | $\rightarrow$ | $N_2 + 3H_2O + 2S$           |
| NO oxidation                               | 3. | $NO + \frac{1}{2}O_2$ -                           | $\rightarrow$ | NO <sub>2</sub>              |
| Standard SCR                               | 4. | $4NH_3-S + 4NO + O_2$ -                           | $\rightarrow$ | $4N_2 + 6H_2O + 4S$          |
| Fast SCR                                   | 5. | $\left  2NH_3 - S + NO + NO_2 \right $            | $\rightarrow$ | $2N_2 + 3H_2O + 2S$          |
| NO <sub>2</sub> -SCR                       | 6. | $4\mathrm{NH}_3\text{-}\mathrm{S}+3\mathrm{NO}_2$ | $\rightarrow$ | $3.5N_2 + 6H_2O + 4S$        |
| Ammonium nitrate<br>formation              | 7. | $2NH_3-S+2NO_2$                                   | $\rightarrow$ | $N_2 + NH_4NO_3 + H_2O + 2S$ |
| Ammonium nitrate<br>decomposition          | 8. | NH <sub>4</sub> NO <sub>3</sub> -                 | <b>→</b>      | $N_2 O + 2H_2 O$             |

| Sample       | Cu (%) |  |  |
|--------------|--------|--|--|
| Cu-Chabazite | 2.48   |  |  |

<sup>‡</sup> Metkar et. al. 2012 / Chem. Eng. Sci. / doi: http://dx.doi.org/10.1016/j.ces.2012.09.008



### **SCR Results<sup>‡</sup>**



# Cu-Chabazite gives high NO<sub>x</sub> conversion activity over wide range of operating temperature and feed composition

<sup>‡</sup> Metkar et. al. 2012 / Chem. Eng. Sci. / doi: http://dx.doi.org/10.1016/j.ces.2012.09.008



### Outline

- ✤ Model development (Multiple length-time scales, model equations) ✓
- ✤ Model tuning and validation for LNT (review of experimental results, LNT reactions) ✓
- ✤ Review SCR model<sup>‡</sup> (SCR reactions) ✓
- Simulation results of dual layer LNT/SCR (concentration profiles, effect of washcoat/catalyst loading)
- Summary and conclusions

# ĿЧ

# LNT/SCR – Effluent NO<sub>x</sub> Profile



**Rich inlet:** 5000 ppm  $H_2$  in bal År / Duration: 20s

Temperature: 300°C

*GHSV:* 60,000 hr<sup>-1</sup> (based on monolith volume);  $\tau_c \approx 20$ ms

### NH<sub>3</sub> Profile in LNT @ 300°C



### **I** NH<sub>3</sub> Profile in LNT/SCR @ 300°C



### Effect of SCR Washcoat Loading



xNOx

yNH3

Excessive SCR loading leads to lower NOx conversion because of undesired diffusional limitation

### Effect of SCR Washcoat Loading



*Inert layer shows effect of diffusion w/o reaction* 

# Effect of LNT/SCR Washcoat Loading



#### **Conditions:**

*Lean inlet:* 500 ppm NO + 5% O<sub>2</sub> in bal Ar / Duration: 60s *Rich inlet:* 5000 ppm H<sub>2</sub> in bal Ar / Duration: 20s *Temperature:* 230°C *GHSV:* 60,000 hr<sup>-1</sup> (based on monolith volume)

Several combinations of LNT/SCR are possible to attain the same conversion

# Effect of LNT/SCR Washcoat Loading



#### Conditions:

*Lean inlet:* 500 ppm NO + 5% O<sub>2</sub> in bal Ar / Duration: 60s *Rich inlet:* 5000 ppm H<sub>2</sub> in bal Ar / Duration: 20s *Temperature:* 300°C *GHSV:* 60,000 hr<sup>-1</sup> (based on monolith volume)



### **Effect of Temperature**



Impact of SCR becomes less significant at higher temperature  $\rightarrow$  significant NH<sub>3</sub> consumption in LNT



### Layered vs Brick



 $\mathbf{R}_{\Omega_2}$ 

(µm)



### **Layered vs Brick**

300°C - 60/20 cycles



### **Summary and Conclusions**



- Multiple combination of LNT and SCR can give same NOx conversion
- For a given LNT loading and temperature, there exists an SCR loading that gives max NOx conversion

SCR function is diminished at higher temperature





Better storage and utilization of generated  $NH_3$  in dual layer configuration compared to brick

### **THANK YOU FOR YOUR ATTENTION!**

### Acknowledgements:





37