Elucidating the Mechanism of NOx Storage and Reduction

Ashok Kumar Divesh Bhatia Robert Clayton* Jin Xu Michael P. Harold Vemuri Balakotaiah

Department of Chemical & Biomolecular Engineering University of Houston * Now with Caterpillar Inc.

http://www.nasa.gov/vision/earth/everydaylife/archives/HP_ILP_Feature_03.html

Acknowledgements DOE-NETL, BASF Catalysts LLC, Ford Motor Company, NSF

Overview

<u>Objective:</u> Gain fundamental understanding of NSR mechanism through focused experiments and capture that understanding in predictive LNT models for design, optimization, and control

- Spatio-temporal effects
- Global reaction LNT model
- Effect of Pt dispersion
- Isotopic TAP experiments

Clayton, R.D., M.P. Harold, and V. Balakotaiah, "Performance Features of Pt/BaO Lean NOx Trap with Hydrogen as Reductant," AIChE J., 55, 687-700 (2009).

Phenomological Picture of NSR with H₂ as Reductant

내

Global Kinetic Model for NOx Storage & Reduction: Storage

1.
$$NO + 1/2O_2 \longleftrightarrow NO_2$$

- 2. $3NO_2 + BaO(f) \rightarrow Ba(NO_3)_2(f) + NO$
- 3. $3NO_2 + BaO(s) \rightarrow Ba(NO_3)_2(s) + NO$

$$\begin{split} R_{v1} &= k_{f2} X_{O_2,wc} \left[1 - \left(\frac{X_{NO_2,wc}}{K_{eq} \sqrt{X_{O_2,wc}} X_{NO,wc}} \right)^2 \right] \frac{1}{K_1 X_{NO,wc} + \frac{1}{K_3} \frac{K_4 X_{NO_2,wc}}{K_1 X_{NO,wc}}} \\ R_{v2} &= k_2 X_{NO_2,wc} c_{BaO}(f) \theta_v(f) \end{split}$$

 $R_{v3} = k_3 X_{NO_2,wc} c_{BaO}(s) \theta_v(s)$

NO Oxidation on Pt Catalysts

NO oxidation rate on $Pt/Al_2O_3 \& Pt/BaO/Al_2O_3$:

- Rate inhibited by NO and NO₂
- Rate limited by kinetic (O₂ adsorption) and thermodynamic factors
- Global kinetic model developed
- Transient kinetics complicated by uptake of NO₂ on Al₂O₃ & BaO and oxidation of Pt

$$1: NO + Pt \longleftrightarrow NO - Pt$$

$$2: O_2 + Pt \longleftrightarrow O_2 - Pt$$

$$3: NO - Pt + O - Pt \longleftrightarrow NO_2 - Pt + Pt$$

$$4: NO_2 + Pt \longleftrightarrow NO_2 - Pt$$

$$5: O_2 - Pt + Pt \longleftrightarrow 2O - Pt$$

Bhatia, D., V. Balakotaiah, M.P. Harold, and R. McCabe, "Experimental and Kinetic Study of NO Oxidation on Model Pt Catalysts," J. Catalysis, under review (2009).

LNT Monolith Model

Model vs. Experiment: Storage

Clayton, R.D., M.P. Harold, and V. Balakotaiah, "NOx Storage and Reduction with H_2 on Pt/BaO/Al₂O₃ Monolith: Spatio-Temporal Resolution of Product Distribution," Appl. Catal. B. Environmental, **84**, 616-630 (2008).

Bhatia, D., M.P. Harold, and V. Balakotaiah, "A Global Kinetic Model for NOx Storage and Reduction on Pt/BaO/Al₂O₃ Monolithic Catalysts, Catalysis Today, under review (2009).

Animated Storage

Global Kinetic Model for NOx Storage & Reduction: Regeneration

4. $8H_2 + Ba(NO_3)_2(f) \rightarrow 5H_2O + BaO(f) + 2NH_3$

 $R_{v4} = k_4 X_{H_2,wc} c_{BaO}(f) \theta_{Ba(NO_3)_2}(f)$

5. $8H_2 + Ba(NO_3)_2(s) \rightarrow 5H_2O + BaO(s) + 2NH_3$

$$R_{v5} = k_5 X_{H_2,wc} c_{BaO}(s) \theta_{Ba(NO_3)_2}(s)$$

6.
$$\frac{10}{3}NH_3 + Ba(NO_3)_2(f) \to 5H_2O + BaO(f) + \frac{8}{3}N_2$$

7.
$$\frac{10}{3}NH_3 + Ba(NO_3)_2(s) \to 5H_2O + BaO(s) + \frac{8}{3}N_2$$

8.
$$H_2O + Al_2O_3 \Leftrightarrow H_2O - Al_2O_3$$

9.
$$NH_3 + Al_2O_3 \Leftrightarrow NH_3 - Al_2O_3$$

Global Kinetic Model for NOx Storage & Reduction: Regeneration

4. $8H_2 + Ba(NO_3)_2(f) \rightarrow 5H_2O + BaO(f) + 2NH_3$

 $R_{v4} = k_4 X_{H_2,wc} c_{BaO}(f) \theta_{Ba(NO_3)_2}(f)$

5. $8H_2 + Ba(NO_3)_2(s) \rightarrow 5H_2O + BaO(s) + 2NH_3$

$$R_{v5} = k_5 X_{H_2,wc} c_{BaO}(s) \theta_{Ba(NO_3)_2}(s)$$

6.
$$\frac{10}{3}NH_3 + Ba(NO_3)_2(f) \to 5H_2O + BaO(f) + \frac{8}{3}N_2$$

7.
$$\frac{10}{3}NH_3 + Ba(NO_3)_2(s) \to 5H_2O + BaO(s) + \frac{8}{3}N_2$$

8.
$$H_2O + Al_2O_3 \Leftrightarrow H_2O - Al_2O_3$$

9.
$$NH_3 + Al_2O_3 \Leftrightarrow NH_3 - Al_2O_3$$

Model vs. Experiment: Regeneration

Varied Length Experiments

Approach:

- Divide original monolith into progressively smaller sections
- Replicate experiments to generate spatiotemporal concentration profiles

Effluent H₂ Transient

Experiment

Model

Effluent NH₃ Transient

Experiment

Model

Effluent N₂ Transient

Experiment

Model

Traveling H₂ Front

Experiment

Model

Traveling NH₃ Front

Experiment

Model

Animated Regeneration

Transient Reduction: Effect of Pt Dispersion with Fixed Stored NOx

High dispersion: faster reduction & N₂
 Low dispersion: slower reduction to NH₃

냬

Effect of Pt Dispersion: Fixed Stored NOx

High dispersion: NOx to N_2 *Low dispersion:* NOx to NH_3

Conditions:

Lean: Fixed Stored NOx 1.3 x 10⁻⁵ mole N Rich: 1500 ppm H_2 , balance Ar Pt, BaO loading: 2.70 wt.%, 14.6 wt.%

Clayton, R.D., M.P. Harold, V. Balakotaiah, C.Z. Wan, "Effect of Pt Dispersion on NOx Storage and Reduction in Pt/BaO/Al₂O₃ Catalyst," Appl. Catal. B. Environmental, in press (2009).

Temporal Analysis of Products (TAP)

Isotopic TAP Study: ¹⁵NO/H₂ Pump- ¹ Probe on Pre-nitrated Pt/BaO/Al₂O₃

<u>Objective</u>: Follow formation of N_2 and NH_3 during ¹⁵NO and H_2 pulses to quantify source of products (i.e. stored NO_x or gas phase NO)

Kumar, A., M.P. Harold, and V. Balakotaiah, "Isotopic TAP Studies of NOx Storage and Reduction," J. Catalysis, to be submitted (2009).

¹⁵NO/H₂ Pump-Probe on Pre-nitrated Pt/BaO/Al₂O₃: Integral Results

26

Microkinetic Model Used for LNT Model Development

 $O_{2}(q) + 2Pt = 2O-Pt$ $H_2(q) + 2Pt = 2H-Pt$ NO(g) + Pt = NO-Pt $2N-Pt=N_2(g)+2Pt$ $NO_2(q) + Pt = NO_2 - Pt$ O-Pt+H-Pt=OH-Pt+Pt $OH-Pt+H-Pt=H_2O(q)+2Pt$ NO-Pt+Pt=N-Pt+O-Pt $O-Pt+NO-Pt=NO_2-Pt+Pt$ $N-Pt+3H-Pt=NH_3-Pt+3Pt$ $NO-Pt+3H-Pt=NH_3-Pt+O-Pt+2Pt$ $NH_3(q) + Pt = NH_3 - Pt$ NO-Pt+H-Pt=N-Pt+OH-Pt $N_2O(q) + 2Pt = NO-Pt + N-Pt$ NH_3 -Pt+3NO-Pt+3Pt=4N-Pt+3OH-Pt NH_3 -Pt+3OH-Pt=3H_2O+N-Pt+3Pt NH_3 -Pt+3O-Pt=N-Pt+3OH-Pt

Storage Chemistry w/ & w/o Pt $NO_2(g) + BaO = BaO - NO_2$ $BaO - O + NO(g) = BaO - NO_2$ $BaO - O + NO_2(g) = BaO - NO_3$ $BaO - NO_3 + NO_2(g) = Ba(NO_3)_2$ $2BaO + O_2(g) = 2BaO - O$

Spillover Chemistry at Pt/Ba Interface NO₂-BaO+Pt=BaO-O+NO-Pt

- Pt chemistry from Xu et al. (2009)
- BaO chemistry is from literature (Olsson et al., 2001)
- Storage & spillover reactions provide Pt/BaO coupling effects

*Xu, J., M.P. Harold, and V. Balakotaiah, "Microkinetic Modeling of Steady-State NO/H*₂/O₂ on Pt/BaO/Al₂O₃ *Monolith Catalysts," Appl. Catal. B. Environmental, in press(2009).*

Xu, J., R.D. Clayton, V. Balakotaiah and M.P. Harold, "Experimental and Microkinetic Modeling of Steady-State NO Reduction by H_2 *on Pt/BaO/Al*₂ O_3 *Monolith Catalysts," Appl. Catal. B. Environmental,* **77**, 395-408 (2008).

Conclusions

- Simple global kinetic model predicts main trends of storage & anaerobic reduction with H₂
- Significant effect of Pt dispersion on regeneration activity & product distribution
- Isotopic TAP studies reveal multiple pathways to N₂
- Microkinetic model under development to capture Pt/Ba interface and Pt dispersion effects

Reaction System: Steady State $\frac{1}{2}$ NO + H₂ on Pt/Al₂O₃

S1: $NO + Pt \leftrightarrow NO - Pt$ $S2: H_{\gamma} + 2Pt \iff 2H - Pt$ S3: $NO - Pt + H - Pt \leftrightarrow N - Pt + OH - Pt$ $S4: N_2O + 2Pt \leftrightarrow NO - Pt + N - Pt$ S5: $H - Pt + O - Pt \iff OH - Pt + Pt$ S6: $H - Pt + OH - Pt \rightarrow H_2O + 2Pt$ $S7: N_2 + 2Pt \leftarrow 2N - Pt$ S8: $NO - Pt + Pt \leftrightarrow N - Pt + O - Pt$ $S10^*: N - Pt + 3H - Pt \leftrightarrow NH_3 - Pt + 3Pt$ S13: $NH_3 + Pt \leftrightarrow NH_3 - Pt$ $S14: O_{2} + 2Pt \iff 2O - Pt$ S15: $NO - Pt + O - Pt \leftrightarrow NO_2 - Pt + Pt$ S16: $NO_{2} + Pt \leftrightarrow NO_{2} - Pt$

Model Development Steps:

- Formulate main mechanism based on data trends
- Utilize literature kinetics where possible
- Maintain thermodynamic consistency
- Do sensitivity analysis; tune key parameters

Reaction System: Steady State NO + H_2 + O_2 on Pt/Al_2O_3

- Four additional hybrid steps involving NH₃:
- S17 $NH_3 Pt + 30 Pt \rightarrow N Pt + 30H Pt$ \searrow

NH₃ oxidation

- S18 $NH_3 Pt + 30H Pt \rightarrow N Pt + 3H_2O + 3Pt$
- ^{S19} $NH_3 Pt + 3NO Pt + 3Pt \rightarrow 4N Pt + 3OH Pt$ NH₃ oxidation by NO
- S20 $NQ Pt + 3H Pt \leftrightarrow NH_3 Pt + Q Pt + 2Pt$ NH₃ formation by NO+ H₂

Comparison of Experiment & Model: \P NH₃ + O₂ on Pt: Ammonia Conversion

Model captures light-off & insensitivity to O₂ concentration

Comparison of Experiment & Model: \mathbb{H}_3 + O₂ on Pt - Product Selectivities

Model captures trends in product selectivities

Comparison of Experiments & Model: NH₃ + NO on Pt

Model captures nonlinear trends with temperature

H

Summary

Project on track:

- Regeneration of model Pt/BaO LNTs: Combined experiments & modeling reveal complex spatio-temporal effects and close coupling between Pt & BaO
- 9 refereed publications (plus 4 under review)
- Near-term (FY09) challenges:
 - Converge on microkinetic treatment of Pt/BaO interface
 - Utilize LNT model for optimization
 - Conduct testing with diesel engine exhaust
 - Complete several more manuscripts