Spatio-temporal Features of Periodic Oxidation of H₂ and CO on Pt/CeO₂/Al₂O₃

Yi Liu Mike Harold Dan Luss

University of Houston Dept. of Chemical & Biomolecular Engineering

Acknowledgements: DOE Vehicle Technologies Program, Texas Commission on Environmental Quality, BASF

Outline

- Motivation & objective
- Experimental system
- Spatio-temporal features of H₂ oxidation on Pt/CeO₂/Al₂O₃
- Coupling between oxidation of H₂ and CO on Pt/CeO₂/Al₂O₃

Background & Motivation

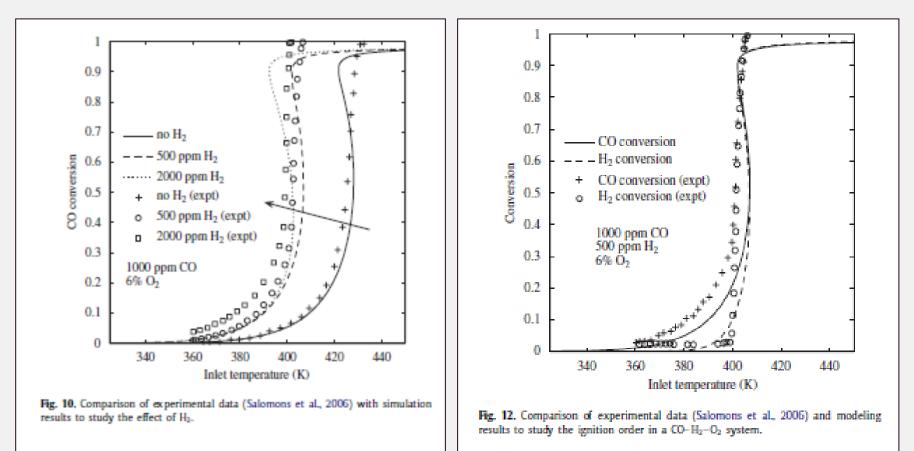
- CO, H₂ are common constituents in vehicle exhaust
- CeO₂ is common ingredient in TWC, LNT converters
- Understanding oxidation of H₂, CO on PGM/CeO₂/Al₂O₃ needed to develop predictive models & to design improved catalytic converters
- Low temperature oxidation is particularly important because of ignition challenges, CO inhibition, etc.
- Coupling known to occur between oxidations of H₂ and CO on Pt/Al₂O₃
 - Advances have been made for steady-state conditions
 - Similar advances needed for transient conditions, especially at low temperature, and with O supplied from CeO₂

Pt-Catalyzed Oxidation of H₂ and CO

- Reactions among most studied of all catalytic reactions
- H₂ oxidation

 $\begin{array}{rcl} H_2 + & 2 \ X \ \overleftarrow{\leftarrow} \rightarrow & 2 \ H-X \\ O_2 & + & 2 \ X \ \overleftarrow{\leftarrow} \rightarrow & 2 \ O-X \\ H-X & + & O-X \ \overrightarrow{\rightarrow} & OH-X \\ H-X & + & OH-X \ \overrightarrow{\rightarrow} & H_2O-X \ + \ X \\ H_2O-X \ \overleftarrow{\leftarrow} \rightarrow & H_2O \ + \ X \end{array}$

Positive order w/r H₂ & O₂ 20-40 kJ/mole CO oxidation


- $CO + X \leftrightarrow CO-X$
- $O_2 + X \leftrightarrow O_2 X$
- O_2 -X + X $\leftarrow \rightarrow$ 2 O-X
- $CO-X + O-X \rightarrow CO_2-X$ $CO_2-X \leftarrow \rightarrow CO_2 + X$

 $R \sim A e^{-E_d/RT} p_{O2}/p_{CO}$ $E_d = 120-180 \text{ kJ/mole}$

Peden and Goodman, J. Phys. Chem. (1988)

Co-oxidation of CO & H₂ on Pt: Some Interesting Steady-State Effects

Enhancement of CO oxidation by H₂

Ignition of CO before H₂

Salomons et al., Appl. Catal. B., **70**, 305 (2007) Bhatia et al., Chem. Eng. Sci., **64**, 1544 (2009)

Co-oxidation of CO & H₂ on Pt

Potential phenomenological effects of H_2 enhancing the rate of CO oxidation at low temperature:

Enhancement of CO oxidation via HCO-Pt complex, reducing CO desorption energy: $E_{d,CO} = E_{d,CO} - \epsilon \theta_{H}$

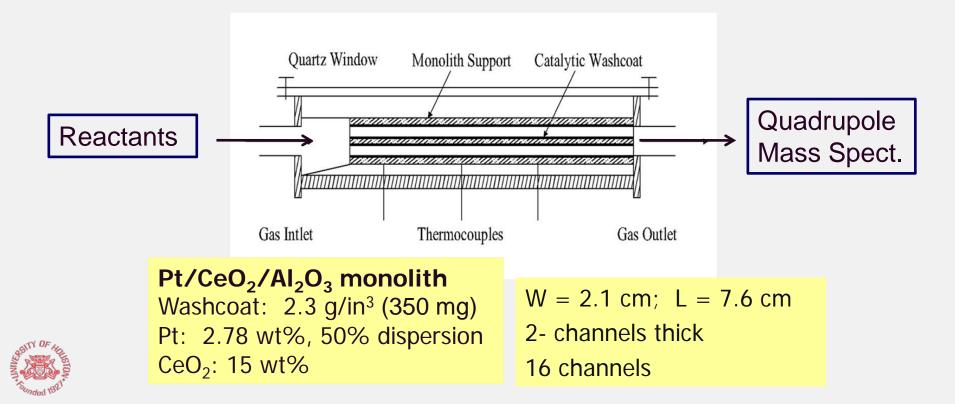
Bhatia et al., Chem. Eng. Sci., 64, 1544 (2009)

■ Possible second reaction pathway involving COOH-Pt: CO-Pt + OH-Pt → COOH-Pt + Pt with lower activation barrier than CO-Pt + O-Pt → CO₂ + 2 Pt

Hauptman et al., Appl. Catal. A., **174**, 397 (2011)

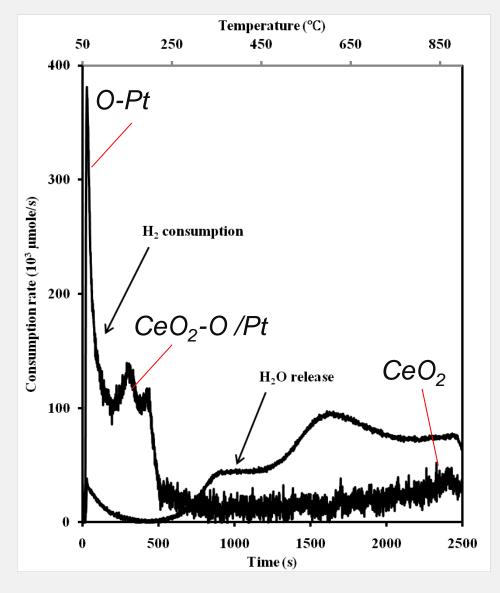
Objective of Study

Carry out the transient oxidations of H_2 and CO and co-oxidation of H_2/CO on $Pt/CeO_2/Al_2O_3$ to elucidate spatio-temporal effects & coupling between the reactions.


$$H_2 + CeO_2 - O \rightarrow H_2O + CeO_2$$
$$CO + CeO_2 - O \rightarrow CO_2 + CeO_2$$

Reactor with IR Imaging & Product Analysis

Capture 2-D temperature profile & product composition during transient reaction



Temperature Programmed Reduction

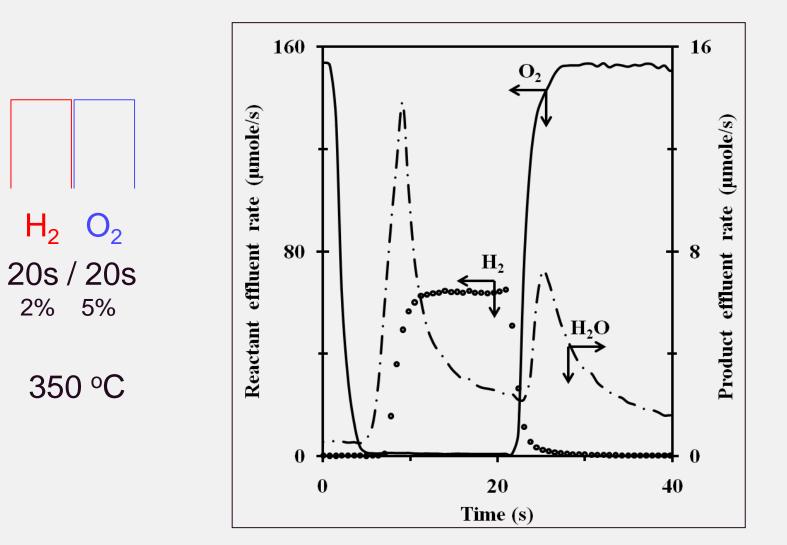
Pre-oxidation: 20% O_2/Ar (500 °C, 3 hr) Sweep with Ar (10 min) Reduction in 1%H₂/Ar

Several forms of O present:

O-Pt (O:Pt ~ 2) CeO_2-O (*O:Pt* ~ 2.5) $CeO_2 \rightarrow Ce_2O_3$

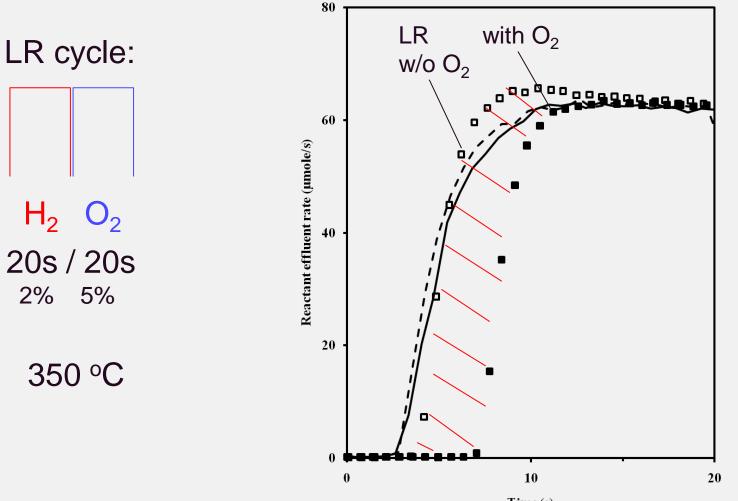
Co-oxidation of CO & H₂ on Pt

Conditions


Space Velocity: 100,000 hr⁻¹

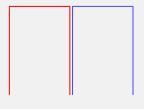
Lean phase: 5% O_2 in Ar for 100 s Rich phase: 2% H_2 (or CO) in Ar for 20 s

Temp: 100 to 400 °C

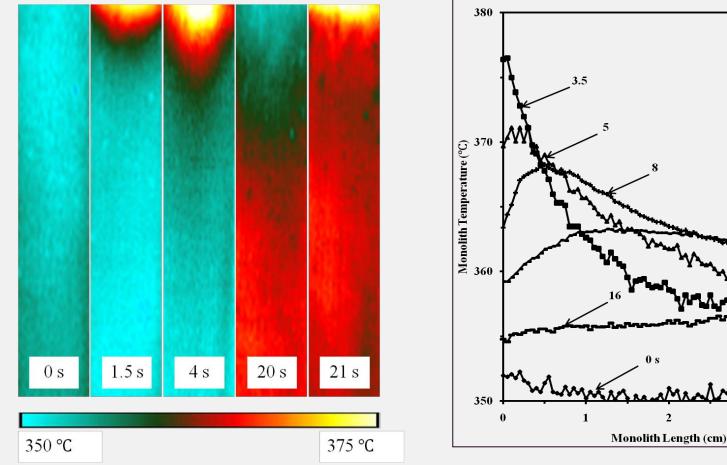

Transient Effluent Concentrations

ASTY OF HILLS

Nothing unusual with transient response?

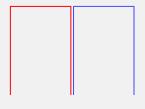

Quantification of H2 + O2 Consumption

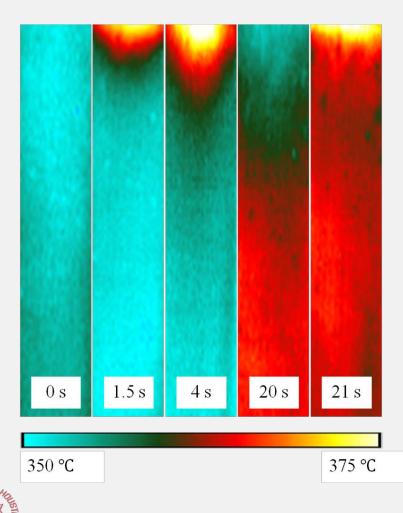
Time (s)

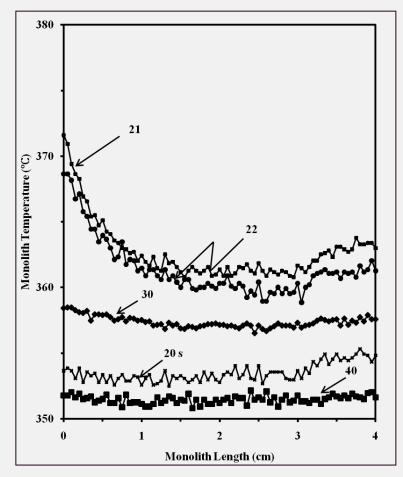


Transient Temperature

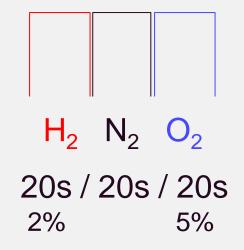
 $H_2 O_2$

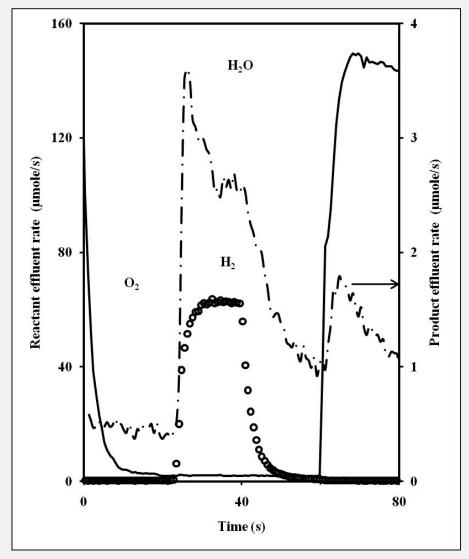

12

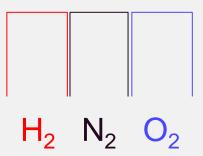


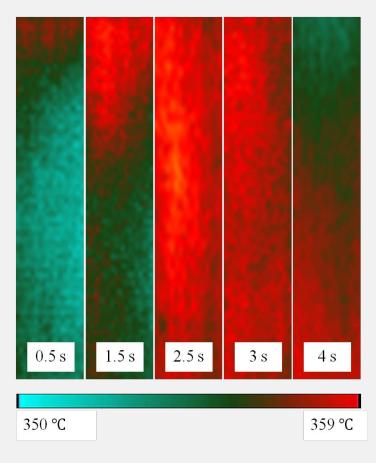

Appreciable spatial nonuniformity in temperature

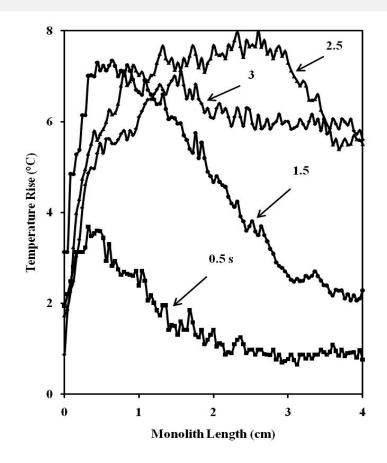
Transient Temperature




 $H_2 O_2$


Transient Effluent Concentrations with N₂ Sweep





Transient Temperature with N₂ Sweep

Transient Effluent Concentrations with N₂ Sweep

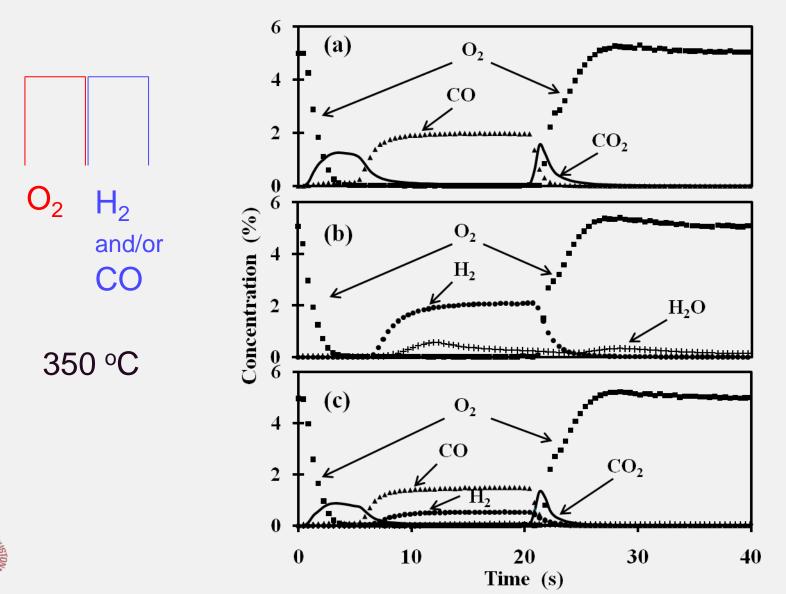
H₂ N₂ O₂ 20s / τ / 20s 2% 5%

Pulse time (s) T	H ₂ consumption (µmol H ₂ / g washcoat)	H ₂ conversion (%)	$\Delta T_{max}(^{\circ}C)$	
0	960	29.5	25.1	
5	630	19.4	15.6	
10	448	13.8	12.3	
15	243	7.5	10.1	
20	211	6.5	8.4	
300	181	5.6	7.8	
600	187	5.7	7.7	

Rcn. with chemisorbed O from CeO₂

Transient Co-oxidation of H₂ & CO

O₂ H₂ and/or CO Space Velocity: 100,000 hr-1


Temp: 100 to 400 °C

Lean phase: 5% O_2 in Ar (100 s)

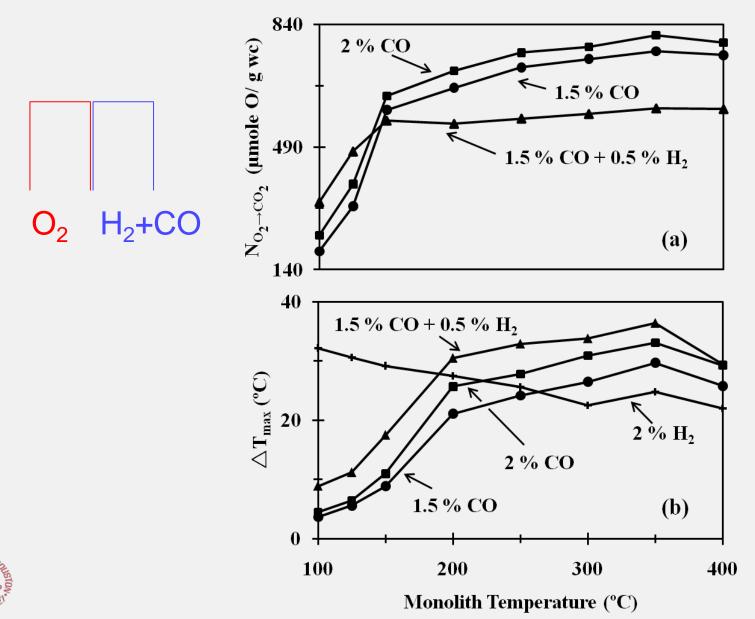
Rich phase: 2% CO in Ar (20 s) 1.5 % CO in Ar (20 s) 1.5 % CO + 0.5% H₂ in Ar (20 s) 2% H₂ (20 s)

Transient Co-oxidation of H₂ & CO: High Temperature

Transient Co-oxidation of H₂ & CO: Low Temperature

6

(a) O_2 4 CO 2 .CO₂ 0 O_2 H_2 **Concentration** (%) O_2 **(b)** and/or CO H_2 2 H_2O 0 6 100 °C (c) O_2 4 CO 2 CO₂ 0 10 20 Time (s) 30 40 0


Transient Co-oxidation of H₂ & CO

O₂ H₂+CO

Ten	np (°C)	100	125	150	200	250	300	350	400
2 % CO	Delay (s)	2.2	2.5	2.8	4.5	4.7	5	5.2	4.3
	T _{max} (°C)	4.5	6.5	11	25.7	27.8	30.9	33.1	29.3
	N_{O2CO2} (µmole								
	O/g washcoat)	238	384	635	707	759	776	809	788
2 % H ₂	Delay (s)	5.6	5.8	5.8	6.1	6.4	6.7	6.9	6.8
	T_{max} (°C)	32.2	30.6	29.2	27.5	25.6	22.5	24.8	22
	N_{O2H2O} (µmole								
	O/g washcoat)	886	934	973	978	972	969	960	929
1.5 %									
CO	Delay (s)	3	3.2	3.5	4.9	5.1	5.2	5.5	5.1
+ 0.5 %									
H ₂	T_{max} (°C)	8.9	11.2	17.5	30.5	32.9	33.8	36.4	29.5
	N _{O2H2O+CO2}								
	(µmole O/ g								
	washcoat)	477	648	777	824	852	863	876	845
	From H ₂	144	171	212	268	281	279	276	247
	From CO	333	477	565	556	571	584	600	598
1.5 %									
CO	Delay (s)	2.6	3	3.2	4.7	5	5.2	5.4	4.6
	T_{max} (°C)	3.7	5.6	8.9	21.1	24.2	26.5	29.7	25.8
	N_{O2CO2} (µmole								
	O/g washcoat)	192	321	596	659	717	741	763	752

Transient Co-oxidation of H₂ & CO

Mechanistic & Kinetic Implications

H₂ oxidation on Pt

CO oxidation on Pt

- $H_{2} + 2 X \leftrightarrow 2 H-X$ $O_{2} + 2 X \leftrightarrow 2 O-X$ $H-X + O-X \rightarrow OH-X$ $H-X + OH-X \rightarrow H_{2}O-X + X$ $H_{2}O-X \leftrightarrow H_{2}O + X$
- $CO + X \leftrightarrow CO-X$ $O_2 + X \leftrightarrow O_2-X$ $O_2-X + X \leftrightarrow 2O-X$ $CO-X + O-X \rightarrow CO_2-X$ $CO_2-X \leftrightarrow CO_2 + X$

 $\blacksquare H_2 + CO \text{ co-oxidation on Pt } ???$

Proposed Schemes for Co-oxidation Scheme 1

 $H-X + CO-X \leftrightarrow HCO-X + X$ $HCO-X + O-X \leftrightarrow CO_2-X + H-X$

 $H-X + CO-X + O-X \leftrightarrow CO_2-X + H-X$

Scheme 2

H-X + O-X → OH-X + X OH-X + CO-X ←→ COOH-X + X COOH-X + X ←→ CO₂-X + H-X

 $H-X + CO-X + O-X \leftrightarrow CO_2-X + H-X$

 $H_{2} + 2X \leftrightarrow 2H-X$ $O_{2} + 2X \leftrightarrow 2O-X$ $H-X + O-X \rightarrow OH-X$ $H-X + OH-X \rightarrow H_{2}O-X + X$ $H_{2}O-X \leftarrow H_{2}O + X$

 $CO + X \leftrightarrow CO-X$ $O_2 + X \leftrightarrow O_2-X$ $O_2-X + X \leftrightarrow 2O-X$ $CO-X + O-X \rightarrow CO_2-X$ $CO_2-X \leftarrow CO_2 + X$

Hauptman et al., Appl. Catal. A., 174, 397 (2011)

Conclusions

- Low temperature oxidation remains challenging problem in vehicle exhaust abatement
- Complex spatio-temporal temperature features during transient oxidation of H₂ on Pt/CeO₂
- Enhancement of CO oxidation by H₂ at low temperature requires further development of new kinetic model

Questions?

