PICARRO

The Advantages of Cavity Ring-Down Spectroscopy in the Analysis of Diesel Engine Emissions

Kathleen Hartnett 2 May 2007

Outline

- Applications driving the need for ultra-trace gas analysis
 - requirements for non-traditional emission analysis
- Cavity Ringdown Spectroscopy (CRDS)
 - an all-optical solution for analysis of combustion gases
- Maximizing the advantages of CRDS by design
 - performance and capabilities from a range of applications
 - H₂S analysis enables optimization of Lean NOx Traps
 - other non-traditional gas species including NH_3 , H_2CO , N_2O , NO_2 , NO
- Extending the platform to a multispecies analyzer
 - a scaleable architecture

The Need for Ultra-trace Gas Analysis

- researchers investigating global climate change need measurements of greenhouse gases with ppt precision and accuracy to enable better models of the carbon cycle
 - need to measure CO₂ and CH₄ without interference from H₂O and with minimum drift
 - measuring isotopic CO2 ratios in ice core and soil samples
- process control optimization and trace impurities monitoring in petrochemical plants is driving the need for high speed analysis with ppb sensitivity and high molecular selectivity
- move to DUV lithography requires monitoring of airborne molecular contaminants such as NH₃ at ppt levels to minimize yield loss and prevent haze formation
- advanced combustion analysis to optimize NOx reduction approaches

Requirements for Non-traditional Gas Analysis

- Developers of clean diesel engines and after-treatment systems need advanced combustion analysis to optimize NOx reduction approaches
 - need to measure non-traditional gas species such as H₂S, NH₃ and H₂CO with high sensitivity, at high speed and without interference in a dynamically changing exhaust stream
- Requirements for an ultra-trace combustion gas analyzer—
 - extreme selectivity
 - ppb sensitivity
 - speed from 1 Hz to 10 Hz
 - ppb precision and accuracy
 - reliable
 - easy to use and in some instances, field deployable

Solution— Ultra-trace Gas Analyzer Based on CRDS

- High Sensitivity, resulting from an extremely long effective pathlength and insensitivity to source fluctuations
- Excellent Molecular Specificity, enhanced by a high finesse cavity and narrow line lasers, results in spectral resolution orders of magnitude higher than FT-IR
- High Linearity, resulting from ability to distinguish individual absorption features
- Extremely Low Drift, enabled by high precision sample temperature and pressure control
- **High Speed**, driven by high speed electronics

Overview of the Analyzer

CRDS is a laser based optical technique

- absolute absorption measurement
- measurements directly related to concentration using the Beer-Lambert Law

Measurement Process

■ The basic measurement algorithm is:

- tune laser and cavity to desired wavelength
- inject light into the cavity
- shut off light when light circulating in the cavity reaches threshold
- measure decay time of light in cavity
- change wavelength set point
- repeat
- Measurement doesn't depend on laser stability

Analyzer Design— Maximizes the Advantages of CRDS

- Compact, high finesse ring cavity provides ppt sensitivity with high stability
 - 35 ml cavity volume→ small enough for very rapid sample exchange with moderate flow while giving a pathlength >12 km
- Sub-ambient operation enhances selectivity
 - line narrowing
- High precision inline wavelength monitor maximizes selectivity
 - accurate spectral location isolates individual spectral features
- precise temperature and sub-torr pressure stability enhances accuracy and minimizes drift
 - temperature controlled to 1 part in 3000, pressure to 1 part in 500

Analyzer Design—

Maximizes the Advantages of CRDS, cont'd.

- High speed electronics and spectral analysis enables up to 10 Hz concentration measurement rates
 - kHz spectral data rate
- Scanning flexibility allows for optimization of performance
 - application specific scanning schemes are developed
 - optimize for speed vs. sensitivity
- Telecom grade DFB and micro-optical components maximize reliability

Outstanding Sensitivity

High finesse cavity with a path length exceeding 12 km results in

- parts-per-billion sensitivity to a wide variety of gas species
- sub-ppbv precision in a few seconds

precision 0.78 ppbv for water vapor

Narrowband Spectroscopy Maximizes Selectivity

Sensitivity with Selectivity --> Specificity

Proprietary wavelength monitor and narrow linewidth laser provides

- ability to isolate individual spectral features
- insensitivity to changes in complex, highly absorbing background gas matrix

Specificity —> High Linearity

Highly linear across the entire dynamic range

High Accuracy

precise temperature and sub-torr pressure stability enables

- excellent accuracy from analyzer to analyzer
- low drift over time

Fast Response

0.035 liter sample volume leads to

- analyzer rise and fall times of ~ a second
- fast clean out times even for sticky gases like H₂O

High Speed Analysis

Scanning flexibility allows

- application specific spectral scanning schemes
 - H₂S with LDL of 50 ppbv at 1 Hz in exhaust for sulfur balance for LNT optimization
 - H₂S with LDL of 2 ppbv (1 min) for ambient monitoring within cabin
 - NH₃ with LDL of 0.2 ppbv in ambient
 - NH₃ with LDL of 10 ppbv at 1 Hz in exhaust
 - H₂CO with LDL of ~15 ppbv as MSAT
 - H₂CO with LDL of ~ 0.5 -1 ppmv at 1
 Hz in exhaust
- 10 Hz operation for monitoring dynamics and capturing transients

Near – Infrared Molecular Fingerprints

- Each molecule absorbs at a different wavelength or set of wavelengths
- Multi-species operation requires a broadband spectrometer

Picarro's Multispecies CRDS analyzer— A Scaleable Architecture

Multispecies CRDS Architecture: Advantages

- Additional species are enabled by adding an additional, reliable telecommunications grade DFB laser
- Same performance characteristics of single species analyzer read directly across to multi-species analyzer, including reliability and ease of use
- Hardware and electronics are reused, minimizing complexity and footprint
- Because all species are measured with the same analyzer cavity, the gas response times and lag times are essentially identical from species to species

A Multispecies Analyzer for Ambient Monitoring—

- Targeted Gas Species for the application:
 - Ammonia (NH₃)
 - Hydrogen Sulfide (H₂S)
 - Nitrous Oxide (N₂O)
 - Methane (CH₄)
 - Carbon Dioxide (CO₂)
 - Water (H₂O)

Species	Precision (5 minutes)	Notes
Ammonia	2 ppbv	1 sigma @ zero
Hydrogen sulfide	1 ppbv	1 sigma @ zero
Nitrous oxide	10 ppbv	1 sigma @ zero
Methane	10 ppbv	1 sigma @ 1 ppmv

Multispecies Performance

Proprietary electronics design enables

Measurement of two or more gas species with a single analyzer

1-sigma (1.0 sec) = 7.5 ppbv

- Ammonia Precision:
 - 3- sigma (30 sec) = 0.065 ppbv
 - 1- sigma (5 min) = 0.022 ppbv

Multispecies Performance, cont'd.

Precision:

1-sigma = 10 ppbv in 5 minutes

Conclusion

- Picarro's ultra-trace gas analyzer is enabling measurement of non-traditional gas species such as H₂S, NH₃ and H₂CO with high sensitivity, at high speed and without interference in a dynamically changing exhaust stream
- what is your measurement challenge?
 - N₂O, NO₂, NO, HNCO
- whether your requirements are for a single species or for multiple species— imagine the possibilities ...
- contact me at
 - khartnett@picarro.com
 - 408.962.3971

Acknowledgements

- Eric Crosson, Ed Wahl, Chris Rella, Sze Tan, Hoa Pham, Bruce Richman, Picarro
- Prof. Scott Richardson and Prof. Ken Davis, Penn State University
- This work was supported, in part, by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-FG02-03ER83751 and the USDA under Award No. 2006-33610-16835.

