

... for a brighter future

Kinetic Study on Soot Oxidation by Simulated Diesel Gas Emissions

HeeJe Seong and Kyeong Lee

Argonne National Laboratory

May 2, 2012

2012 CLEERS Workshop

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Overview

- Introduction
- Relevance and Objectives
- Experimental
- Theory of Analytic Methodologies
- Results
 - Activation energies according to different methodologies
 - NO_x , O_2 , and CO_2 effects on soot oxidation behaviors
 - Activation energies according to different NO₂ concentration

Summary

Acknowledgements

Introduction

- Development of Advanced DPF systems
 - Deeper understanding about filtration and regeneration mechanisms is necessary.
 - Thermal runaway during DPF regeneration is a potential problem.
 - Therefore, the accurate evaluation of kinetic parameters and soot oxidation behaviors is required. (SAE 2010-01-2166)
 - Modifications of channel structures and geometry have also been studied. (SAE 2010-01-0537).

Relevance and Objectives

- Activation energy of soot oxidation has been evaluated to be different, depending on experimental conditions, instruments used, and analytic methodologies.
- Kinetic parameters of soot oxidation need to be evaluated at the same emissions compositions as those in engine emissions, including NO_x, O₂ and CO₂.
- Assess the activation energy of soot oxidation at different oxidation conditions and various analytic methodologies to obtain its most accurate values.
- Evaluate soot oxidation behaviors and kinetic parameters at the ambient experimental conditions simulating real engine emissions, consisting of NO_x, O₂ and CO₂.

Experimental

Sample materials

Carbon black (Printex-U)

Instruments

- Thermogravimetric analyzer (TGA)
- Evaluation of the effects of inert gases and analytic methodologies
 - > Reactant gas mixture: 40% (He, N_2 and Ar) + 60% air
 - Analytic methodologies
 - Isothermal kinetic analyses: 575°C, 600°C, 625°C
 - Non-isothermal kinetic analyses (various heating rates at 1 10 °C/min)
 - Integral method
 - Iso-conversional method
 - Differential method

Evaluation of kinetic parameters with various compositions of reactant gases (See table)

Experimental (Cont'd)

Various compositions of reactant gases have been used to evaluate kinetic parameters at diesel emissions conditions.

NIC	Concentrations of reactant gases						
NO	NO	NO ₂	CO_2	O ₂			
	(ppm)	(ppm)	(%)	(%)			
1	0	0	<u>8</u>	0			
2	0	0	8	<u>8</u>			
3	<u>225</u>	0	8	0			
4	<u>1000</u>	0	0	0			
5	0	225	8	<u>0</u>			
6	0	225	8	<u>4</u>			
7	0	225	8	<u>8</u>			
8	0	225	<u>0</u>	8			
9	0	<u>180</u>	3.5	13.5			
10	0	<u>450</u>	8	8			
11	0	1250	10	5.5			

Theory of the different analytic methodologies

Isothermal kinetic analysis

$$a = \frac{m_0 - m_1}{m_0 - m_1}$$
 (Degree of conversion)

$$\frac{d\alpha}{dt} = A \cdot \exp(-\frac{E_a}{RT}) \cdot f(\alpha)$$
 (Rate of reaction)

$$f(\alpha) = (1 - \alpha)^n$$
 (Simplified kinetic expression)

$$b \text{ By taking logarithm, } ln\left(\frac{d\alpha}{dt}\right) = -\frac{E_a}{RT} + ln(A) + n(1 - \alpha)$$
 ($ln\left(\frac{d\alpha}{dt}\right) \text{ vs. } \frac{1}{T}$)

Non-isothermal kinetic analysis

$$\frac{d\alpha}{dt} = A \cdot \exp(-\frac{E_a}{RT}) \cdot f(\alpha) \qquad (\beta = \frac{dT}{dt} : \text{heating rate})$$
$$\int_0^\alpha \frac{d\alpha}{f(\alpha)} = \int_{T_0}^T \left[\frac{A}{\beta} \cdot \exp\left(-\frac{E_a}{RT}\right)\right] dT$$

Integral method

$$-g(\alpha) = \frac{A}{\beta} \cdot \frac{E_a}{R} \cdot p(x) \qquad [g(\alpha) = \int_0^\alpha \frac{d\alpha}{f(\alpha)}, p(x) = \int_x^\infty \frac{e^{-u}}{u^2} du, u = \frac{E_a}{RT}]$$

- Coats-Redfern's approximation, $p(x) = e^{-x} \frac{x-2}{x^2}$
- By taking logarithm, $log \frac{g(\alpha)}{T^2} = log \left[\frac{AR}{\beta E_a} \left(1 \frac{2RT}{E_a}\right)\right] \frac{E_a}{2.3RT}$ $(log \frac{g(\alpha)}{T^2} \text{ vs. } \frac{1}{T})$

Theory (cont'd)

Iso-conversional method (Vyazovkin)

$$- g(\alpha) = \frac{A}{\beta} \cdot \frac{E_a}{R} \cdot p(x)$$

- Different heating rates [
$$\beta_i$$
 ($i = 1, ..., n$)]

- Approximation:
$$p(x) = \frac{e^{-x}}{x} \cdot \frac{x^2 + 10x + 18}{x^3 + 12x^2 + 36x + 24}$$
, where $x = \frac{E_a}{RT}$

Differential method

$$- \frac{d\alpha}{dt} = A \cdot \exp\left(-\frac{E_a}{RT}\right) \cdot (1-\alpha)^n$$

- By taking logarithm, $log\left(\frac{d\alpha}{dt}\right) - nlog(1 - \alpha) = -\frac{E_a}{RT} + logA$,

$$log\left(\frac{d\alpha}{dt}\right) - nlog(1 - \alpha)$$
 vs. $\frac{1}{T}$ for hypothesized n

Results – Part 1

Effects of inert gas and analytic methodologies

Isothermal experiments:

- Effects of inert gas on activation energy
- > Non-isothermal experiments:
 - Effects of Inert gas and heating rate on activation energy

Activation energy is quite dependent on inert gas and heating rate

Isothermal kinetic analysis

Differential method proposed an activation energy independent of inert gas at the heating rate of 1°C/min

Non-isothermal: Iso-conversional method Non-Isothermal: Differential method

Results – Part 2

Examination of soot oxidation behaviors for various reactant gas compositions

- Non-isothermal experiments with 1°C/min of heating rate (Instantaneous mass vs. Temperature)
- Analytic methodology: Differential method

NO₂ promotes soot oxidation at low temperatures, while O₂ does at high temperatures

O₂ effects

NO₂ effects

NO and CO₂ effects turned out to be minor

High engine load condition promotes soot oxidation in a wide temperature range by high NO₂ concentration

Simulated engine emissions

- Hypothesis: NO was fully converted to NO₂.
- High NO₂ concentration at the high load expanded the oxidation zone to the lower temperature (thermal runaway control)

Arrhenius plots show two explicit oxidation zones in the presence of NO₂

Kinetic analysis

(5 – 95% conversion)

- In presence of NO₂, two different oxidation behaviors were observed at high and low temperature zones, respectively.
- Increased NO₂ expanded mainly the low-temperature oxidation.
- Therefore, two sets of kinetic parameters (e.g., activation energy, reaction order, etc.) need to be evaluated for each condition.

However, the use of a high heating rate does not show the NO₂ effects clearly

Non-isothermal experiments with 10°C/min Arrhenius plots with 10°C/min

Isothermal experiments further confirmed the temperature dependence of NO₂ and O₂ oxidation

Activation energy was evaluated for two oxidation zones (E_a is significantly lower in the LT zone)

Compositions (NO ₂ : ppm, CO ₂ & O ₂ : vol%)		Low temperature (LT) zone			High temperature (HT) zone				
		T (°C)	E _a (kJ/mole)	n	T (°C)	E _a (kJ/mole	e) n		
a)	NO ₂ : 0,	CO ₂ : 8,	O ₂ : 8	T (°C):	477 – 62	5, E _a (I	kJ/mole): 18	53, n=	0.83
b)	NO ₂ : 180,	CO ₂ : 3.5,	O ₂ : 13.5	441 – 491	105	1	515 – 610	154	0.85
c)	NO ₂ : 225,	CO ₂ : 8,	O ₂ : 8	410 – 471	67	1	526 - 625	157	0.80
d)	NO ₂ : 450,	CO ₂ : 8,	O ₂ : 8	352 – 471	44	1	550 - 626	154	0.80
e)	NO ₂ :1250	CO ₂ : 10,	O ₂ : 5.5	288 – 500	39	1	575 – 616	159	0.85

- \succ With increased NO₂ concentration,
 - LT zone: E_a decreased; the LT-zone expanded.
 - HT zone: E_a remained fairly constant.
- The NO₂ effects need to be optimized for efficient soot oxidation in consideration of oxidation temperature.

Summary

- Activation energy was found to be sensitive to inert gas and heating rate.
- The "Differential Method" offered an inert gas-independent activation energy at the heating rate of 1°C/min.
- NO₂ promoted soot oxidation mainly at the low temperature zone, while O₂ did at the high temperature zone.
- Activation energies for soot oxidation were evaluated at two different temperature zones, only when NO₂ was present in gas mixtures.
 - With increased NO₂
 - Low temperature zone: E_a significantly decreased and the LT-zone expanded.
 - High temperature zone: E_a remained fairly constant.
- Both NO₂ concentration and oxidation temperature need to be optimized for effective DPF regeneration.

Acknowledgement

Funding from U.S. DOE Office of Vehicle Technologies (Advanced Engine Combustion Research Program)

