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Introduction

B Development of Advanced DPF systems

Deeper understanding about filtration and regeneration
mechanisms is necessary.

Thermal runaway during DPF regeneration is a potential
problem.

Therefore, the accurate evaluation of kinetic parameters and
soot oxidation behaviors is required. (SAE 2010-01-2166)

Modifications of channel structures and geometry have also
been studied. (SAE 2010-01-0537).




Relevance and Objectives

M Activation energy of soot oxidation has been evaluated to be
different, depending on experimental conditions, instruments used,
and analytic methodologies.

B Kinetic parameters of soot oxidation need to be evaluated at the
same emissions compositions as those in engine emissions,
including NO,,, O, and CO.,,.

B Assess the activation energy of soot oxidation at different oxidation
conditions and various analytic methodologies to obtain its most
accurate values.

B Evaluate soot oxidation behaviors and kinetic parameters at the
ambient experimental conditions simulating real engine emissions,
consisting of NO,, O, and CO.,,.




Experimental

B Sample materials
» Carbon black (Printex-U)
B Instruments
» Thermogravimetric analyzer (TGA)
B Evaluation of the effects of inert gases and analytic methodologies
» Reactant gas mixture: 40% (He, N, and Ar) + 60% air
» Analytic methodologies
— Isothermal kinetic analyses: 575°C, 600°C, 625°C
— Non-isothermal kinetic analyses (various heating rates at 1 — 10 °C/min)
* Integral method

* |so-conversional method
« Differential method

B Evaluation of kinetic parameters with various compositions of
reactant gases (See table)




Experimental (Cont’d)

M Various compositions of reactant gases have been used to evaluate
Kinetic parameters at diesel emissions conditions.

Concentrations of reactant gases

M \o NO, CO, O,
(Ppm) (ppm) (%) (%)
1 0 0 8 0
2 0 0 8 8
3 225 0 8 0
A 1000 0 0 0
5 0 225 8 0
6 0 225 8 4
7 0 225 8 8
8 0 225 0 8
0 180 35 135
0 450 8 8
0 1250 10 55




Theory of the different analytic methodologies

B |sothermal kinetic analysis

> o= (Degree of conversion)
mo—m-q

> C:l—ct” = A-exp(— 5—;‘,) - f(a) (Rate of reaction)

> fla) = A —a) (Simplified kinetic expression)

» By taking logarithm, In (%) = —i—;ﬁ + n(A) + n(1 — a) (ln( ) VS. —)
B Non-isothermal kinetic analysis

> d—“ = A-exp(— i—;) - f(a) B = % . heating rate)

a da Eq
> fy = To[— exp (—12)] dT
» Integral method
_ 4, ka _
- gl@) =53 p) [9(a) =

— By taking logarithm, log%f) (1 — ﬂ)] —

2. 3RT




Theory (cont’d)

» |so-conversional method (Vyazovkin)

- 9@ =% % p(

— Different heating rates [B; (i =1, ... ... ,n)]

x ,
— Approximation: p(x) = ex x°+10x+18

- where x = La
x3+12x2+36x+24’ RT

» Differential method

- %:A-exp(—%)-(l—a)"

— By taking logarithm, log (%) —nlog(1 — a) = —% + logA,

d 1 .
log (d—f) —nlog(1 — a) vs. - for hypothesized n




Results — Part 1

W Effects of inert gas and analytic methodologies

» Isothermal experiments:
— Effects of inert gas on activation energy
» Non-isothermal experiments:
— Effects of Inert gas and heating rate on activation energy




Activation energy Is quite dependent on inert
gas and heating rate

> Isothermal kinetic analysis » Non-isothermal: Integral method
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Differential method proposed an activation energy
independent of inert gas at the heating rate of 1'C/min

> Non-isothermal: » Non-lsothermal:
Iso-conversional method Differential method
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Results — Part 2

B Examination of soot oxidation behaviors for various
reactant gas compositions
— Non-isothermal experiments with 1°C/min of heating rate
(Instantaneous mass vs. Temperature)
— Analytic methodology: Differential method




NO, promotes soot oxidation at low temperatures,
while O, does at high temperatures
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NO and CO, effects turned out to be minor
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High engine load condition promotes soot oxidation in
a wide temperature range by high NO, concentration
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Arrhenius plots show two explicit oxidation zones
In the presence of NO,

the low-temperature oxidation.

I '\ N R — Therefore, two sets of kinetic

PRI S ). S b parameters (e.g., activation energy,
‘ 1 | ‘ 1 reaction order, etc.) need to be

evaluated for each condition.
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However, the use of a high heating rate does not
show the NO, effects clearly
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Isothermal experiments further confirmed the
temperature dependence of NO, and O, oxidation
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Activation energy was evaluated for two oxidation
zones (E, Is significantly lower in the LT zone)

Low temperature (LT) High temperature (HT)
Compositions zone zone

(NO,: ppm, CO, & O,: vol%) E, E,
T T
& e () kaimole)
a) NO,: 0, CO,:8, 0,8 T(°C): 477 - 625, E,(kJ/mole): 153, n=0.83

DIV ONEE o R L oW K-l 441 — 491 | 105 1 515-610 [ 154 | 0.85
c) NO,: 225, CO,:8, O, 8 [El W yiNNEN:y 1 526-625| 157 | 0.80
d) NO,: 450, CO,: 8, O, 8 [yl iRy 1 550-626| 154 | 0.80
e) NO,:1250, CO,: 10, O, 5.5 PA:Islooiigs 1

575-616 | 159 | 0.85

» With increased NO, concentration,
- LT zone: E, decreased; the LT-zone expanded.
— HT zone: E, remained fairly constant.

» The NO, effects need to be optimized for efficient soot oxidation in
consideration of oxidation temperature.




Summary

B Activation energy was found to be sensitive to inert gas and heating
rate.

B The “Differential Method” offered an inert gas-independent activation
energy at the heating rate of 1°C/min.

B NO, promoted soot oxidation mainly at the low temperature zone, while
O, did at the high temperature zone.

B Activation energies for soot oxidation were evaluated at two different
temperature zones, only when NO, was present in gas mixtures.
» With increased NO,

— Low temperature zone: E, significantly decreased and the LT-zone
expanded.

— High temperature zone: E_ remained fairly constant.

B Both NO, concentration and oxidation temperature need to be optimized
for effective DPF regeneration.
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