

SAMPLE SYSTEM EFFECTS OF FTIR MEASURED NH₃ RESPONSE

2013 DOE Crosscut Workshop on Lean Emissions Reduction Simulation

April 10th - 12th, 2013 University of Michigan – Dearborn, Dearborn, Michigan

University of Michigan:

John Hoard

Nanda Gopalan Venkata Ramanan

MKS Instruments

Barbara Marshik

April 10-12, 2013 CLEERS

Introduction

- NH₃ is known to "stick" on walls
- Causes slower response than other gases
- Experiment to quantify this effect
- Ran step transient tests
 - SF₆/NH₃ gas used, 1/25 ratio
 - SF₆ does not stick, has good FTIR response
 - Compare SF₆ to NH₃ response to measure wall sticking

Test Schematic

April 10-12, 2013

Test Variables

- Heated line length
 - 20 or 35 feet (6.1 or 10.7 meter)
- Heated line diameter (nominal)
 - 1/4 or 3/8 inch (6.35 or 9.52 mm)
- Heated line type
 - SS, SS corrugated, Silico corrugated, Per-Fluro Alkoxy (PFA)
- Temperature (line and FTIR cell)
 - 113° or 191°C
- Water
 - Dry or ~5%
- Flow rate
 - 5, 10, 15, and 20 SLPM

Test Lines

	Sample Lines		
1/4 th inch lines	35 feet lines		
	Line 1	Stainless Steel Straight	
	Line 2	Stainless Steel Silico Corrugated	
	Line 3	Stainless Steel Corrugated	
	Line 4	Per-Fluro Alkoxy (PFA) tubing	
	20 feet lines		
	Line 5	Stainless Steel Straight	
	Line 6	Stainless Steel Silico Corrugated	
	Line 7	Stainless Steel Corrugated	
3/8 th inch lines	35 feet lines		
	Line 8	Stainless Steel Corrugated	
	Line 9	Per-Fluro Alkoxy (PFA) tubing	
	20 feet lines		
	Line 10	Stainless Steel Silico Corrugated	

May 6-9, 2012 5

Experimental

- Partial factorial with three replicates
- Procedure:
 - Set line and cell temperature
 - Program to run:
 - Dry
 - 5 then 10, 15, 20 SLPM four on/off cycles each
 - Wet
 - Same as dry
 - Change set temperature and repeat
 - Change line and repeat

Raw data

- •All first peaks removed from data set
- •Thus, three conditioned replicates

May 6-9, 2012 7

Data Reduction

- For each "up" transient:
- Fit curve
- Use fitted equation to estimate NH₃ storage
- Perform General Linear Model (ANOVA) on result using Minitab®

April 10-12, 2013

Typical "up" Response (NH₃)

NH₃ response of SS Straight line at 113 C 5lpm

NH₃ response of SS Straight line at 113 C 20lpm

mks Typical "up" Response $(NH_3 \text{ and } SF_6)$

NH₃/SF₆ response of SS Straight line at 113 C 20lpm

Analysis – Time Constants

- Expected response to be rounded
 - Mixing and diffusion during transport
 - Wall sticking
- MATLAB curve fit
 - Single exponential fits SF₆
 - Two terms needed for NH₃
 - Separate fits for each rise transient
 - Total of 307 transients after flyers removed

Technology for Productivity Curve fit to rise data

 $r^2 = 0.999895$

$$CNH3 = CNH3_{\text{final}} \times (a0 \times (1 - e^{(-t-b)/T1}) + ((1 - a0) \times (1 - e^{(-t-b)/T2})))$$

T1 sec	T2 sec	a0	b sec	CNH3_final ppm
1.5	18.3	0.829	0.000515	27.9

Fit Results

Value	Minimum	Maximum
Tau ₁	1.0 sec	6.0
Tau ₂	11 sec	199
a_0	0.76	0.999
r ² fit quality	0.988	0.999

•Short time constant (transport/mixing) is similar to SF₆

April 10-12, 2013

Further Analysis

- Estimate the NH₃ storage on walls from second term
- Area= $Y_f^*(1-a_0)^*(2Tau_2 + 2Tau_2^*exp^{(-3)})$ ppm-sec

- NH₃ stored = Area * flow *22.4/60 μ mol
- NH₃ stored = μ mol * (17 gm/mol) / 1000 mg
- General Linear Model analysis in Minitab®

Fit Quality

- This is a linear model
- •Required with categorical variables and two-value variables
- •Real responses might be curved

Technology for Productivity NH₃ Stored Main Effect

•Significant at 95% confidence

Interaction NH₃

- •Some significant interactions:
- •Type by length, diameter, and temperature
- ·Water by all others

Relative Importance

- Test a brick of SCR catalyst, 0.75 x 0.83"
- 0.006 liter catalyst volume
- Typical SCR 200-1500 mg/L NH₃ capacity
- Thus, catalyst stores 1.2-9.0 mg NH₃
- In this experiment, NH₃ storage is minimum
 0.224, maximum 39 mg
- Can be large with respect to catalyst!
- Check against catalyst before fitting kinetics

April 10-12, 2013

KS Conclusions

- As expected, NH₃ responds more slowly than SF₆
- Mixing/transport time constant ranged ~1-6 sec, median 1.6
- NH₃ wall storage time constant ranged ~11-199 sec, median
 55 seconds
- a₀, fraction of transient due to transport and mixing,
 ~0.76-0.999, median 0.94
- NH₃ wall storage quantity is significant compared to small SCR samples

Recommendations

- For transport and mixing:
 - Flow > 5 SLPM; 10-15 seems a good range
 - Line length and diameter had little effect in this range
 - The sample line type of material: corrugated is slower
- With respect to NH₃ retention effects:
 - Length and diameter not very critical in this range
 - Corrugated line stores most NH₃ (but Silco offsets), straight line least
 - Presence of water reduces NH₃ storage
 - Higher temperature reduces storage
 - Higher flow increases NH₃ storage (but lower as a percent of NH₃ flow)

April 10-12, 2013

Acknowledgments

- This work was done at the University of Michigan's Walter E. Lay Automotive Laboratory for MKS Instruments
- All test data were taken by Nanda
- Thanks to Bill Murphy and Tim Martin at MKS for their invaluable assistance in arranging the test lines and gases

Backup

Analysis of Time Constants

- Are the time constants related to the test variables?
- General Linear Model in Minitab®
 - 307 samples after flyers removed
 - Analyzed Tau₁, Tau₂, a₀

April 10-12, 2013

ANOVA Result

Significant at 95% Confidence?

Tau₁:

Short, mixing and transport

Tau₂:

Longer, wall sticking

 a_0 :

Fraction: 1 means all Tau₁, 0 means all tau₂

Test Factor	Tau₁	Tau ₂	a _o
Length	No	Yes	Yes
Diameter	Yes	Yes	Yes
Material	Yes	Yes	Yes
Temperature	Yes	Yes	Yes
Water	Yes	Yes	Yes
Flow	Yes	No	Yes

Tau₁ Fit Quality

May 6-9, 2012 25

- •Flow rate is the main effect
- Approximately 2 seconds mean time constant

Interactions – Tau₁

Interaction of length, type

Tau₂ Fit Quality

Main Effect – Tau₂

- •All variables significant except flow rate
- •Approximately 70 seconds mean time constant
- •Relative importance of Tau₂ and Tau₁ depends on a₀
- •Surprising direction of temperature effect see a₀

Interactions – Tau₂

•Interaction of Water, temperature: temperature matters more when wet

a₀ Fit Quality

Main Effect – a₀

- •Higher value means transport and mixing are more important
- •All variables significant
- •Approximately 0.95 of the transient is attributed to Tau₁
- More important at higher flow
- •High temperature increases a0 \sim 0.94 to 0.96 i.e., wall effect drops from 6% of the transient to 4%

Interactions – a₀

