SO₂ Oxidation model on Pt/Pd DOC

<u>Hom Sharma¹</u> Ashish Mhadeshwar^{1,2} Rampi Ramprasad^{1,*}

Department of Chemical, Materials and Biomolecular Engineering University of Connecticut , Storrs, CT

10 April 2013

Corresponding author: <u>sharma.hom@engr.uconn.edu</u>

Iniversity of Connecticut

Congratulations Huskies !!!

UConn 93, Louisville 60: Huskies win **eighth** national championship

University of Connecticut NCAA Women's Basketball Champions 2013

Outline

Background : SO_x impacts on DOC

Microkinetic modeling : SO₂ oxidation on Pt

- Mechanism development
- Kinetics parameters
- Model performance

•SO_x Chemistry on Pt(111)/Pd(111) \bullet SO₂ Oxidation on Pt(111) /Pd(111) Reaction pathways

300

Monolith

8% O SV=33000 h 60 - A/V=81.2 cm

SO₂ Convers

20

40 ppm SO

Equilibrium

conversion

Symbols: Experiment: [Dowdy et al.]

ine: Simulation

400 500 600 Temperature [°C]

Implementation of first principles into microkinetic modeling

Sulfur in diesel fuel

Sulfur impacts on diesel oxidation catalysts

Mechanism development

	Oxygen adsorption/desorption ¹⁷¹
R ₁	$O + * \rightarrow O^*$
R_2	$O^* \rightarrow O + *$
\mathbf{R}_3	$O_2 + 2^* \rightarrow 2O^*$
R ₄	$2O^* \rightarrow O_2 + 2^*$
	SO _x adsorption/desorption
R ₅	$S + * \rightarrow S^*$
R ₆	$S^* \rightarrow S + *$
R ₇	$SO + * \rightarrow SO^*$
R ₈	$SO^* \rightarrow SO + *$
R ₉	$SO_2 + * \rightarrow SO_2^*$
R ₁₀	$\mathrm{SO}_2^* \rightarrow \mathrm{SO}_2 + *$
R ₁₁	$SO_3 + * \rightarrow SO_3^*$
R ₁₂	$SO_3^* \rightarrow SO_3 + *$
	SO _x oxidation/reduction
R ₁₃	$\mathrm{SO}_3^* + * \rightarrow \mathrm{SO}_2^* + \mathrm{O}^*$
R ₁₄	$\mathrm{SO}_2^* + \mathrm{O}^* \to \mathrm{SO}_3^* + *$
R 15	$\mathrm{SO}_2^* + * \rightarrow \mathrm{SO}^* + \mathrm{O}^*$
R ₁₆	$\mathrm{SO}^* + \mathrm{O}^* \to \mathrm{SO}_2^* + *$
R ₁₇	$SO^* + * \rightarrow S^* + O^*$
R ₁₈	$S^* + O^* \rightarrow SO^* + *$
R ₁₉	$2SO_2^* \rightarrow SO^* + SO_3^*$
R ₂₀	$SO^* + SO_3^* \rightarrow 2SO_2^*$
R ₂₁	$S^* + SO_2^* \rightarrow 2SO^*$
R ₂₂	$2SO^* \rightarrow S^* + SO_2^*$
R ₂₃	$SO^* + SO_2^* \rightarrow S^* + SO_3^*$
R ₂₄	$ S^* + SO_3^* \rightarrow SO^* + SO_2^*$

Jniversity of

connecticut

Kinetic parameters

Model validation

Why model validation is necessary ?

Kinetic parameters are extracted/taken from UHV TPD/R conditions and 0K DFT calculations

DOC operating conditions are significantly different:

- Atmospheric pressure
- •High flow rates
- Low emissions concentrations (ppm)
- Monoliths
- •Fixed beds (literature experiments)
- Mechanism/model performance should be tested under practically relevant conditions.
- Isothermal plug flow reactor modeling at steady state.

Model performance: SO₂ oxidation on Pt

niversity of

connecticut

 $SO_2^* + 0^* \iff SO_3^* + *$ BI = 0.9 $A_{forward} = 2 \times 10^{12} \text{ s}^{-1}$

Sharma, H. N.; Suib, S. L.; Mhadeshwar, A. B.; Novel Materials for Catalysis and Fuels Processing, ACS, 2013, In press;

Sensitivity/Coverage analysis: SO₂ oxidation

Reaction Pathways : SO₂ oxidation

Sharma, H. N.; Suib, S. L.; Mhadeshwar, A. B.; Novel Materials for Catalysis and Fuels Processing, ACS, 2013, In press;

Model reduction: SO₂ oxidation

	Oxygen adsorption/desorption ¹⁷¹
R ₁	$O + * \rightarrow O^*$
R_2	$O^* \rightarrow O + *$
R ₃	$O_2 + 2^* \rightarrow 2O^*$
R ₄	$2O^* \rightarrow O_2 + 2^*$
	SO _x adsorption/desorption
R_5	$S + * \rightarrow S^*$
R ₆	$S^* \rightarrow S + *$
R ₇	$SO + * \rightarrow SO^*$
R ₈	$SO^* \rightarrow SO + *$
R ₉	$SO_2 + * \rightarrow SO_2^*$
R ₁₀	$SO_2^* \rightarrow SO_2 + *$
R ₁₁	$SO_3 + * \rightarrow SO_3^*$
R ₁₂	$SO_3^* \rightarrow SO_3 + *$
	SO _x oxidation/reduction
R ₁₃	$\mathrm{SO}_3^* + * \rightarrow \mathrm{SO}_2^* + \mathrm{O}^*$
R ₁₄	$\mathrm{SO}_2^* + \mathrm{O}^* \to \mathrm{SO}_3^* + *$
R ₁₅	$\mathrm{SO}_2^* + * \rightarrow \mathrm{SO}^* + \mathrm{O}^*$
R ₁₆	$SO^* + O^* \rightarrow SO_2^* + *$
R ₁₇	$SO^* + * \rightarrow S^* + O^*$
R ₁₈	$S^* + O^* \rightarrow SO^* + *$
R ₁₉	$2SO_2^* \rightarrow SO^* + SO_3^*$
R ₂₀	$SO^* + SO_3^* \rightarrow 2SO_2^*$
R ₂₁	$S^* + SO_2^* \rightarrow 2SO^*$
R ₂₂	$2SO^* \rightarrow S^* + SO_2^*$
R ₂₃	$SO^* + SO_2^* \rightarrow S^* + SO_3^*$
R ₂₄	$S^* + SO_3^* \rightarrow SO^* + SO_2^*$

niversity of

onnecticut

Sharma, H. N.; Suib, S. L.; Mhadeshwar, A. B.; Novel Materials for Catalysis and Fuels Processing, ACS, 2013, In press;

- Density functional theory implemented in VASP¹
- Perdew-Burke-Ernzerhof (PBE) functional²

Model Parameters

- ➤ (111) surface
- 3x3 supercell
- 5 layers (2 bottom layers frozen)
- ➢ 45 Pt/Pd Atoms
- 4x4x1 k-point mesh
- > 12 Vacuum
- Plane-wave cut-off energy = 400 eV

¹Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54(16),11169. ²Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77(18), 3865-3868.

niversity of

onnecticut

Molecular Orientation

- 1. Upright standing
- 2. Parallel to the surface

Upright standing molecule are stable

Strong binding to fcc position

S-O bond length increases & ⊾OSO angle decreases

Binding energy (kcal/mol) [0.11ML]

Species	Pt(2	111)	Pd(111)		
	This work	Other DFT ¹⁻²	This work	Other DFT ¹⁻³	
SO ₄	87.2	86.5, 81.6	85.1	-	
SO ₃	30.3	27.5, 33.0	27.4	-	
SO ₂	27.2	24.4, 28.1	26.7	28.9	
SO	69.5	68.1, 68.0	66.8	-	
S	122.2	118.7	115.1	111.8	
0	98.6	100.6	99.7	108.1	

Binding Strength

 $\mathrm{S} > \mathrm{O} > \mathrm{SO} > \mathrm{SO}_4 > \mathrm{SO}_3 > \mathrm{SO}_2$

¹Happel, M.; Luckas, N.; Vines, F.; Sobota, M.; Laurin,M.; Gorling, A.; Libuda, J. J. Phys. Chem. C 2011, 115,479-491. ²Lin, X.; Schneider, W. F.; Trot, B. L. J. Phys. Chem. B 2004, 108(35), 13329{13340. ³Alfonso, D. R. Surface Science 2005, 596(1-3), 229{241.

17

SO₂ Oxidation on Pt(111)/Pd(111) surfaces

SO₂ oxidation on Pt(111)/Pd(111) surfaces

SO ₂ Oxidation	n	Pt(111) E (Kcal/mo	E _a P DI) (I	d(111) E Kcal/mo	: 'a I)	Energy [kcal/mol]	- Pd(30 - 20 - 0 - 0 -
This work	K	22.5-33.8	3 2	2.7-30			+
Experime	ent	~23 ^{b-e}					$BO \begin{bmatrix} F & Pt() \\ F & F \end{bmatrix}$
UBI-QEP		21 .5 ^a	2	2.3		kcal/m	20 -
						ergy [0 -
Method	\mathbf{Path}	Pt(1	11)	Pd(1	11)	Ene	0
		E_a	A_o	\mathbf{E}_{a}	A_o	-1	oĽ.
		$(\rm kcal/mol)$	(s^{-1})	$(\rm kcal/mol)$	(s^{-1})	_	0.0
CI-NEB	Path .	A 33.8	$1.5{ imes}10^{11}$	30.0	4.4×10^{12}	2	
	Path	B 23.1	1.1×10^{11}	23.9	6.1×10^{12}	1	A
	Path	C = 22.5	3.0×10^{11}	22.7	5.9×10^{12}	1	

Jniversity of Connecticut

^aSharma, H. N.; Suib, S. L.; Mhadeshwar, A. B.; Novel Materials for Catalysis and Fuels Processing, ACS, 2013, In press;
^bNagoshi, H. A study of sulfur dioxide oxidation on platinum Master's thesis, 1972.
^cErtl, G.; Knzinger, H.; Schth, F.; Weitkam, J. Handbook of Heterogeneous Catalysis, Vol. 4; Wiley, 1997.
^dBenzinger, W.; Wenka, A.; Dittmeyer, R. Appl. Catal., A 2011, 397(1-2), 209-217.
^eDupont, V.; Jones, J. M.; Zhang, S.-H.; Westwood, A.;Twigg, M. V. Chem. Eng. Sci. 2004, 59(1), 17-29.

Validation of SO₂ model with DFT parameters

SO₃ Oxidation on Pt(111)/Pd(111) surfaces

 $SO_3^* + O^* \longrightarrow SO_4^*$

Path A- O diffusion

Path B – SO₃ diffusion

SO ₃ Oxidation	Pt(111) E _a (Kcal/mol)	Pd(111) E _a (Kcal/mol)
Path-A	30.3	19.7
Path-B	22.4	16.0

Lower barrier for SO_4 formation on Pd(111) may indicate the possibility of sulfate formation on Pd catalysts as observed in experimental studies.

Summary

Microkinetic modeling

- \Box SO₂ oxidation model was developed.
- Plug flow reactor model was used to test the SO₂ oxidation mechanism.
- □ Model performed well in DOC relevant conditions.

SO_x chemistry using DFT

- \Box Various stable SO_x species were studied.
- Activation barriers and pre-exponential factors were computed and compared with experimental results.
- Microkinetic model was simulated using DFT computed parameters.

Acknowledgements

Funding

US EPA STAR Fellowship FP917501

This presentation was made possible by EPA-STAR fellowship number **FP917501**. Its contents are solely the responsibility of the fellow and do not necessarily represent the official views of the EPA. Furthermore, the EPA does not endorse the purchase of any commercial products or services mentioned in the Presentation.

Group members

Postdocs

- ***** Dr. Clive Bealing
- Dr. Ghanshyam Pilania
- Dr. Vinit Sharma

Graduate students

* Satyesh, Venkatesh, Arun, Lihua, Chenchen, Yenny

