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Objective

The objective of this presentation is to highlight potentially
changing exhaust conditions (temperature, flow rate, and
species) resulting from different fuels (petroleum diesel and
biodiesel) and different modes of combustion (conventional
and low temperature modes of combustion).

Basic Outline
• How does fuel change exhaust conditions?

• Engine system responses
• Fundamental responses

• How does mode of combustion change exhaust conditions?

• Opportunities to predict NO concentrations via pressure-
based feedback control?



Background (System Responses)

A system response is that manifested by a 
difference in fuel property on the engine or 
one of its systems; system responses 
depend on the design of the system.



Background (System Responses)

A lower heating value, in spite of
a slightly higher density, requires
a longer injection pulsewidth to
deliver roughly the same amount
of energy, to deliver the same
brake torque.
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A system response is that manifested by a difference in fuel property on the engine or 
one of its systems; system responses depend on the design of the system.
Indirect System Response

Difference in fluid property manifests a change in 
engine behavior, leading to indirect changes to 
combustion and exhaust conditions.

• Higher bulk modulus leads to advance in 
injection timing

• Lower exhaust temperatures lead to differences 
in boosting capabilities

Controlled System Response
The necessarily higher / longer injection profile (to 
match engine torque) manifests a change in a 
controlled parameter.

• All controlled parameters could be adjusted, 
including, a) injection timing, b) rail pressure (if 
applicable), c) EGR level (if applicable), and d) 
VGT vane setting (if applicable).



Background (Fundamental Responses)

A fundamental response is that manifested 
by a difference in fuel property directly on 
the in-cylinder fundamental processes 
(such as combustion, emissions formation, 
and thermodynamics); fundamental 
responses depend on the “design” of the 
fuel.



Origins of NO Changes
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“Biodiesel NOx penalty” provides a good example for describing the basis of a system 
response versus a fundamental response.



Influence of Injection Timing
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A parameter such as injection timing is really a “system-response” since it depends on 
the design of the system.



Origins of NO Changes
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Biodiesel and Petroleum Diesel

Biodiesel NO tends to be higher, due to the 
fundamental response of relatively leaner premix 
reaction zones of biodiesel compared to petroleum 
diesel.

In this engine, however, system responses tend to 
cause lower NO emissions with biodiesel.
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Biodiesel and Petroleum Diesel
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Typically, biodiesel will tend to have lower exhaust 
temperatures, but perhaps roughly the same the same exhaust 
flow rates. This may translate to slightly lower exhaust 
enthalpy.



Biodiesel and Petroleum Diesel
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Background (Low Temperature Combustion)
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[1] Kitamura, T. et al., 2003, SAE Transactions - Journal of Fuels and Lubricants, 112(SAE Paper No. 2003-01-1789).
[2] Kamimoto, T. et al., 1988, SAE Transactions – Journal of Engines, 97(SAE Paper No. 880423).

Data overlaid on work adapted from [1] based on work done by [2].
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Low Temperature Diesel Combustion
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- Conventional Diesel Combustion

- Low Temperature Diesel Combustion

Low temperature combustion is able to simultaneously reduce NO and soot
concentrations, the latter of which is the “building block” for PM.



Combustion Effect
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Generally, approaching “ultra-clean” combustion modes results in a decrease in 
exhaust energy (although temperature increases, exhaust flow rate decreases).

In the case of EGR, exhaust temperature increases (later phased combustion), but 
exhaust energy flow rate decreases as mass flow rate decreases.



A Challenge and an Opportunity
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• Mostly due to combustion phasing, and in spite of its name, low temperature diesel 
combustion may actually yield higher exhaust temperatures (but lower exhaust flow 
rates) than conventional combustion.

• One challenge facing low temperature diesel combustion is its excessively high HC 
(and CO) concentrations. But this may create an opportunity. . .
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Exhaust Exotherm to Support Catalysis

• The use of a diesel oxidation catalyst, with primary purpose to reduce low 
temperature diesel combustion hydrocarbon and carbon monoxide concentrations, 
also provides exothermic heating of the exhaust. 

• Such action could improve the combination efficiency of a clean low temperature 
diesel engine / after treatment system.
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Model Description(Assumptions)

(a)  (b) 
Figure 1: Schematic of combustion at each stage: (a) the first stage; (b) the second stage

• Model is based on Szekely and Alkidas1

• Cylinder is divided into two main zones, each with two sub-zones. Heat 
release occurs in two stages. During the burning of a stage, one zone 
transfers between its two sub-zones while the second zone remains inactive 
(acts like a non-participating ideal gas zone).

• When one stage of burning is complete, the heat release occurs in the 
second zone with the second stage burning.

• The scheme is meant to improve mixture temperature prediction for NO 
calculation; it’s not meant to physically represent diesel combustion. 

1 Szekely, G., Alkidas, A. (1986). SAE 861272



NO Modeling via Two-Stage Heat Release

(a)  (b) 
Figure 1: Schematic of combustion at each stage: (a) the first stage; (b) the second stage

• In Szekely and Alkidas1, what is here called the “stoichiometric zone” they 
called the rich zone (but took phi = 1). Variation of phi above 1 for the “rich 
zone” results in diverging solutions.

• Consequently, phistoichiometric zone = 1, and philean zone is given by the following 
correlation1:

Φl = 1.035·Φavg – 0.0917

1 Szekely, G., Alkidas, A. (1986). SAE 861272

• The calculation (and ultimately NO prediction) is very sensitive to this 
correlation, and will require future work.



NO Modeling via Two-Stage Heat Release
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Conclusions

• Depending on the design of the system or the “design” of the
fuel, exhaust conditions may be more or less favorable (from
a temperature, flow rate, and species perspective) with
alternative fuels (such as biodiesel).

• Advanced modes of combustion such as later-phased low
temperature combustion are likely to render lower exhaust
enthalpy, due mostly to a decrease in exhaust flow rate.
Exhaust constituents could, however, create an opportunity
for exhaust exothermic heating.

• Simple “real-time capable” models may enable direct control
of certain emissions (such as nitric oxide) to help support
after treatment catalysis.



Thank you!

Thank you for your attention!
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Transient Feed-Gas Testing
• To evaluate reduced temperature as the leading cause, the catalyst was 

exposed to high temperature exhaust prior to “mode switching” to rich 
PCI.

• First evaluations were conducted with lean PCI (data herein shown)



Transient Feed-Gas Testing

• Evaluations at rich PCI reveal that an established in-catalyst exotherm 
“dies” nearly instantly upon mode switching.



Combustion Mode Switching
• Will the DOC stay “suitably” active during temporal rich excursions?
• How will temporal rich excursions affect DOC activity as time goes on?

• t = 0 seconds to t ~ 2000 seconds:
– Lean PCI for 60 seconds
– Rich PCI for 5 seconds
– Lean PCI for 60 seconds, etc.

• t ~ 2000 seconds:
– Engine returned to lean PCI for 

eventual stabilization.



Combustion Mode Switching

• DOC never maintains effectiveness during rich PCI excursions.



Combustion Mode Switching

• DOC could be exhibiting decreased activity as time goes on with mode 
switching.


