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Real LNT composition & functions are complex
- 3-way catalyst (Pt, Pd, Rh, CeO2

 

, ZrO2

 

, Al2

 

O3

 

) + NOx

 

storage component (Ba, K)
- Function in cyclic mode between fuel lean & rich conditions:

Normal lean phase: NOx storage
Short rich excursion: NOx release/reduction

Little information available applicable to real system modeling
-

 

Intrinsically transient, gradient-rich integral systems with temporally & spatially  
varying chemistry

NOx Storage/Reduction (NSR); Oxygen Storage Capacity (OSC)
Reductant evolution/consumption; sulfation/desulfation

-

 

Conventional approach (integral measurement; simple model LNT) alone 
insufficient to resolve intra-LNT details

This Effort Aims to Provide Insights Necessary to 
Design/Model/Control Real LNT Systems

Sulfur causes increasing fuel penalty to maintain NOx reduction: 
A major technical barrier for industry
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Evaluate impacts of sulfur on global LNT performance & 
inside-the-catalyst distribution of reactions

NOx storage
Oxygen storage
Reductant consumption

Results Part 1 of this talk: Performance Evaluation

Determine spatial nature of sulfation
Sulfation of Ba (NOx storage) vs. Ce (O2 storage) 
Plug-like vs. axially distributed

Results Part 2 of this talk: Postmortem Characterization

Develop a conceptual model on LNT operation
Able to describe global performance changes (e.g., NOx conv. & 
NH3 selectivity) with varying sulfation level

Conclusions of this talk

Work to Provide a Framework Describing How 
Sulfation Develops & Impacts Real LNT Systems
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DRIFTS
•

 

Powders, washcoated

 
wafers

•

 

Surface adsorbed 
species

Approach: Characterize Commercially Relevant LNT System 
on a Range of Scales

Bench reactor w/ 
intra-cat speciation
• Monolith cores
• Performance/sulfation
• Spatial rxn. distributions

Catalyst:
Umicore GDI LNT (CLEERS reference)

Composition: 
Washcoated

 

cordierite substrate (625 cpsi)
Pt/Pd/Rh, Ba, La, CeO2

 

, ZrO2

 

, Al2

 

O3

 

, etc. 

7/8” x 3” core 
taken from a 

4.66”

 

x 6”

 

brick

Microreactor
•

 

Powders
•

 

TPR
•

 

Total surface area

Characterization
•

 

Powders, washcoated

 
wafers

•

 

Elemental/XPS analyses
•

 

Microscopy/EPMA

Integration: conceptual model
● Performance evolution 
● Distribution of rxns
● Nature of sulfation/sulfur species 

New insights for

● Emission control modeling
● Development activities
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Results Part 1 
Performance Evaluation: 

Sulfur Impact on Global LNT Performance & 
Spatiotemporal Distribution of Reactions
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Procedure:
1.

 

Degreening

 

including 4 sulfation/desulfation

 

cycles “0 g/L S”
2.

 

Performance evaluation
3.

 

1st

 

S dosing 1.7 g/L S
4.

 

Performance evaluation 
5.

 

2nd

 

S dosing 3.4 g/L S total
6.

 

Performance evaluation

Performance evaluation (NSR & OSC) with fast cycling
60” lean/5” rich   ▪ SV=30000 h-1 ▪ 200, 325, 400 °C

Environment Time Gas Composition

NO O2 H2 H2 O CO2 N2

Lean

(storage)

60 s 300 (or 0) ppm* 10% 0% 5% 5% Bal

Rich

(regeneration)

5 s 0 ppm 0% 3.4% 5% 5% Bal

*300 ppm NO for NSR & 0 ppm NO for OSC cycling.

Bench Reactor Experimental Conditions
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Results from 
Reactor Outlet Gas Analyses

Chemiluminescent detector: NO/NOx
FT-IR: N2 O/NH3
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Sulfation Decreases Global NOx Conversion & 
Increases NH3 Selectivity

Before sulfation, NOx conv. was ~100%
S decreased NOx conv.  but significant impact only at 3.4 g L-1

N2O was low & insensitive to S (or decreased under different conditions)
NH3 increased significantly with each sulfur dosing
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Results from 
Spatially Resolved Gas Analyses

NOx /H2

Cat-In Cat-Out

1/4 3/41/2

SpaciMS*

Gas flow

Sampling capillary

*Spatially Resolved Capillary Inlet Mass Spectrometer
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Localized Sulfation & its Distinctive Impact on NSR 
& OSC Evidenced by Spatial RXNs Profile Changes

NSR distribution
Fresh-state:

NSR was localized in LNT front

Sulfated-state:
Progressive poisoning from front

“Plug-like”

Fractional catalyst location
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OSC distribution
Fresh-state:

Abundant OSC uniformly distributed

Sulfated-state:
Progressive degradation from front

much less plug-like

0 g S/L-1

1.7 g S/L-1

3.4 g S/L-1
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●

 

NSR zone: both NOx & O2 are stored & reduced
●

 

OSC-only zone: O2 is stored & reduced with little NOx storage
●

 

Sulfated zone: NOx storage sites poisoned & OSC sites are partially degraded

NSR zone OSC-only 
zone

Sulfated 
zone NSR zone OSC-only 

zone

325 °C Unsulfated state (0 g S/L)

Sulfated state (1.7 g S/L)

Sulfated 
zone NSR zone

Sulfated state (3.4 g S/L)

Interim Summary: Sulfur Degrades LNT in a Plug-Like 
Manner with Greater Impact on NOx Storage Sites vs. OSC
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Results Part 2 
Postmortem Characterization: 

Identification of Surface Sulfur Species & 
their Spatial Distribution 

(Techniques: EPMA, DRIFTS, XPS, TPR)

Inlet Outlet

SXN1 SXN2 SXN3 SXN4

3” Core with 3.4 g S/L loading
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Microscopy/EPMA Reveals Complexity & Heterogeneity

EPMA (Electron Probe Micro Analysis) of SXN1 Cross Section

Back Scatter Image
Void

Mg
AlCe, Zr

Ba

10 µm

Cordierite

●

 

Overall uniform washcoat 
composition (e.g., not layered)

●

 

Highly concentrated domains exist 
(grain size~ 1-10 μm)

-

 

Ba, Ce-Zr, Mg-Al
●

 

Individual particle level assessment 
difficult

Compositional analyses:
~25 micron spot, 10 measurements along the green arrow
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− 4.3% Ba
− 21.2% Ce, 1.6% Zr
− 4.9% Mg, 11.5% Al
− 1.1% Pt, 0.2% Pd
− Rh, La etc.

Back Scatter Image

Washcoat (WC)
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Statistical Cross-Correlation Analyses of EPMA 
Elemental Maps Indicate Two Distinct Domains

● Mg, Al, Ce, Zr, present mainly as two distinct domains: 
● MgAl2 O4

− Consistent w/ WC compositional analyses (minor stand-alone Al)
− ~90 g/L loading

● CeO2 -ZrO2
− Appear to accommodate BaO (17 g/L) & PGM (3.5 g/L) acting as support (XRD confirms)
− ~90 g/L loading with 9:1 atomic ratio based on WC compositional analyses
−
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Intensity (Y-axis):
+1=highest correlation (self)
-1=lowest correlation

SXN1

cf. Loading values (g/L) estimated from EPMA (WC) & ICP-AES (WC+cordierite)

Al Mg
Elemental Maps

…



15 Managed by UT-Battelle
for the Department of Energy

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Al Ba Ce Mg Pd Pt Rh S Zr

S

Ba: 0.62 Ce: 0.35

EPMA Cross-Correlation Analyses Indicate Highest 
Sulfur Sensitivity for Ba

● More S at catalyst upstream (SXN1) than downstream (SXN4)
● Sulfur sensitivity: Ba > Ce-Zr (> ?) Mg-Al

● Only Ba

 

shows significant S correlation
● Resolution does not allow discrimination between Ce-Zr

 

& Mg-Al
Work in progress (e.g., different length scale analyses: Ba, Ce-Zr, Mg-Al, Al-rich areas etc.)
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Sulfates are Dominant Surface S Concentrated at 
Upstream LNT Region

Sulfates greatest at front & carbonates were significant only near back face
Axial S distribution (DRIFTS, XPS) consistent w/ elemental analysis: 
surface=bulk (except for SXN4: surface>bulk)
Highly convolved peaks make precise attribution difficult (e.g. Ba vs. Ce)    
Peaks identification using standards & depth scan (XPS) in progress

DRIFTS
(Diffuse Reflectance Infrared FT Spectroscopy)
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Temperature Programmed Reduction (TPR) Reveals Different 
Sulfur Species

●

 

Four peaks deconvolved
Low T (35% of total S): 

Peak 1 at 492 °C; Peak 2 at 526 °C
High T (65% of total S): 

Peak 3 at 571 °C; Peak 4 at 700 °C

●

 

From literature
Low T peaks: Ce-Zr & Al2O3
High T peaks: Ba

●

 

Mg-Al contribution to low T peaks?

Work in progress for identification
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TPR of 4 Sliced SXNs Further Clarifies Nature & 
Axial Distribution of Sulfates Species
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●Only high T peaks for SXNs 3&4
cf. Only NSR  degradation (SpaciMS)

Ba S sensitivity (EPMA)

●Low T peaks decrease from SXN1 
to SXN4 

cf. OSC degradation only in SXNs 1&2

TPR of Four Sliced SXNs
Microreactor
In powder form

Tentative conclusion:
Low T peaks: CeO2 -ZrO2 , Al2 O3 & maybe MgAl2 O4 sulfates in SXNs 1&2
High T peaks: Ba sulfates in SXNs 1-4

Work in progress: peak deconvolution at each location, determination 
of DeS activation energy for each S species & TPR of standards
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Unsulfated state
Uniform washcoat distribution: not layered nor graded
Local compositional heterogeneity with two distinct domains

“Active LNT”: PGM, Ba, CeO2-ZrO2, Al2O3 (minor)
Ba is primary NOx storage sites, CeO2 -ZrO2 is support/OSC

Mg-Al (spinel likely)
What’s the role: 2nd NOx storage? (basic but big particles & low PGM)

Sulfated state
NOx storage sites (Ba) sulfation very efficient (“plug-like”)

Hard to DeS (high T necessary)
OSC (Ce-Zr) sites inhibited but to a lesser extent

Easier to DeS (low T sufficient)
Al2O3 sulfates
More work needed to assess Mg-Al sulfation

Apparently low S sensitivity

Interim Summary: Ba Sulfation is Much More Efficient (Plug- 
Like) than Ce Sulfation Leading to Harder-to-DeS Sulfates
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Conclusions 
Putting It All Together: 

A Conceptual Model on the Functioning of a 
Commercial LNT at Varying Sulfation Levels
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Complex realistic LNT formulation 
uniformly washcoated on the 
monolith

Two distinct domains
I. PGM, Ba, CeO2 -ZrO2 , Al2 O3

II. Mg-Al

NSR localized at catalyst front
Ba is the major NOx storage sites

OSC evenly distributed throughout
CeO2-ZrO2 (also serves as support 
for Ba and PGM phases) 
Residual H2 and NH3 from NSR zone 
oxidized in OSR-only zone

Role of Mg-Al phases not clear

Conceptual LNT Model: Fresh State

NOx
storage/reduction 

zone

N2

N2ONH3

H2

B C

Oxygen 
storage/reduction-

only zone

A
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Sulfation creates a localized 
sulfated zone at the catalyst front

Sulfation front progresses along 
LNT length

Ba sulfation: plug-like
Ce-Zr sulfation: distributed
Mg-Al sulfation: even less distributed?
S affinity: Ba > Ce-Zr, Mg-Al (Ba harder to 
DeS)

In the sulfated zone:
Ba sites (NSR) inactive
Ce-Zr sites (OSC) still active but degraded
Ce-Zr+Al2O3+Mg-Al =~35% S (“S trap”) 

As sulfation progresses:
NSR zone moves downstream
High NOx conv. maintained until high S load
OSC-only zone is reduced by advancing NSR
Reductant & NH3 slip increases due to 
reduced OSC-only zone 

Conceptual LNT Model: Sulfated State

NOx
storage/reduction 

zone

N2

N2ONH3

H2

B C

Oxygen 
storage/reduction-

only zone

A

Sulfated 
zone

Recently confirmed by direct NH3 
measurements inside the catalyst

cf. following talk by Bill Partridge
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Future Work

•

 

Complete the planned physicochemical analyses of Umicore sample
–

 

EPMA & EDS analyses for elemental cross-correlations (Ba-S vs. Mg-Al-S)

–

 

XPS depth/length profiles of four sulfated SXNs
–

 

High-Resolution XPS to discriminate different sulfur species 

•

 

Characterization of standard materials (CeO2 , MgAl2 O4 etc.) to help 
understand Umicore sample S/DeS behavior
–

 

DRIFTS, TPR, EPMA, XPS

•

 

Desulfation mechanisms
–

 

Kinetic data for the four sulfur species identified
–

 

Intermediate DeS & performance evaluation to further evaluate the roles 
of each sulfur species

•

 

Numerical modeling 
–

 

Microkinetic-based models in collaboration with R. Larson at SNL

–

 

Refinement with physicochemical & performance data
–

 

Sulfur impact
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NO+O2 in lean phase
(NSR + OSC)

SpaciMS H2 Data Show NSR & OSC Distributions

325 °C, 0 g S/L-1

NSR-attributable H2 consumption = Total H2 – OSC H2 consumption

More H2 consumption in LNT front with NO+O2 than with O2 only

O2 in lean phase (no NO)
(OSC)

NSR: NOx Storage/Reduction
OSC: Oxygen Storage Capacity
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Elemental Analyses of Axial SXNs Consistent with Plug- 
Like NSR Sulfation/Inhibition Observed from Performance Evaluation

●

 

Plug-like NOx storage/reduction sites sulfation
●

 

More distributed OSC sites sulfation
●

 

Surface-sensitive techniques necessary to refine these bulk 
analyses

Total S in 1st, 2nd, 3rd SXNs > S 
necessary for full Ba sulfation

Total S << S necessary for full 
Ce sulfation for all SXNs

S associated w/ NSR was 
estimated assuming S went first 
to Ba until full sulf. w/ S:Ba=1:1

Other sites: CeO2-ZrO2 etc.
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