

1D/3D Simulation in the Development of DeNOx Aftertreatment Systems for US 2010 Heavy Duty Applications

Johann C. Wurzenberger

Roland Wanker Martin Schüßler Wilfried Edelbauer Eberhard von Berg Klaus Pachler Bernd Breitschädel Clemens Fink Ruppert Scheucher Alex Raulot Moritz Frobenius Reinhard Tatschl

- Introduction
- System Model and Simulation Workflow
- Models and Results

DOC

- DPF
- Injector
- SCR
- Pipes
- DeNOx Performance during WHTC
- Conclusion

Introduction

Growing importance of exhaust aftertreatment due to emissions legislation needs more effort for

- Component and system layout
- System application

1D/3D Simulation Workflow for efficient integration of simulation in development process using

- 1D model alibration system analysis and optimization
- 3D detail analysis

 \rightarrow Example:

1D/3D analysis of heavy-duty exhaust system

Exhaust Gas Aftertreatment System

Aftertreatment Simulation Workflow¹:

- 1) Calibrate individual components with experimental data in an automatic parameter optimization process (AVL Design Explorer)
- 2) Investigate 3D effects with FIRE
- 3) Build up 1D BOOST model of overall system
- 4) Calculate the performance of the system during drive cycle

1: see ATZ 7/8 2004

Aftertreatment Simulation Workflow

Automatic Model Calibration

- Design Explorer
- Environment for
 - Design optimization
 - Sensitivity analysis
 - Parameter identification

Using

- DoE (Full Factorial Design, Sobol Sequence, Latin Hypercube Sampling, Orthogonal Arrays)
- Optimization (NSGA, Nelder-Mead, NLPQL,...)
- Response Surface Methods (NN, SVM)

DOC Model

Transient 1D 2-Phase model for an arbitrary number of gas and surface species¹

- 4 Oxidation reactions are enabled
- Light-off simulation shows typical behavior for CO, HC and NO

1: see SAE 2003-01-1003

DPF Model

Wall flow DPF model¹:

- Asymmetric channel geometries
- Ash and soot loading
- Soot depth and cake layer filtration
- Active and passive soot regeneration w/o catalytic support

Catalytic wall reactions

Cleers Workshop 11

SiC Filter with Segmentation

Gluing zones

- Impact on pressure drop
 - Reduced effective flow area
 - Different number of active filtration sides near gluing zones (2/3/4 Sides)
- Impact on regeneration
 - Different thermal inertia
 - Different heat transfer behavior

Active Regeneration of Segmented SiC DPF

Cleers Workshop 11

May 2008 | Page 10

Urea Injector Model

- Injection of urea-water solution
- Spray / gas interaction
 - Liquid / gaseous momentum exchange
 - Droplet / gas heat transfer
 - Water evaporation / urea thermolysis
- Spray / wall / wallfilm interaction
 - Spray impingement
 - Droplet / wall heat transfer
 - Wallfilm formation
 - Wallfilm evaporation / thermolysis
- Cooling of walls
 - Lateral heat conduction
- Hydrolysis
- Catalytic reactions

Evaporation / Thermolysis / Hydrolysis - Model /

Droplet Mass transfer model

Evaporation of water: $H_2O(l) \rightarrow H_2O(g)$

Thermolysis: Hydrolysis: $(\mathrm{NH}_2)_2\mathrm{CO} (\mathrm{s} \mathrm{ or} \mathrm{l}) \rightarrow \mathrm{NH}_3 (\mathrm{g}) + \mathrm{HNCO} (\mathrm{g})$ HNCO $(\mathrm{g}) + \mathrm{H}_2\mathrm{O}(\mathrm{g}) \rightarrow \mathrm{NH}_3(\mathrm{g}) + \mathrm{CO}_2(\mathrm{g})$

Spray in Cross-Flow - Validation

Measurement

Simulation

Schwarzenberg, M. Untersuchung von Spraykonzepten zur Dosierung von Harnstoff-Wasser-Lösung beim Einsatz eines SCR-Verfahrens. Diplomarbeit, RWTH Aachen, 2005

Cleers Workshop 11

Spray Wall Interaction Model

Wall Impingement depends on

- Droplet velocity
- Droplet temperature
- Wall temperature
- Droplet properties (size, viscosity,...)

Spray Wall Film Model

Sketch of Film Element

Modeled Effects:

- Film formation and transport
- Temperature dependent splashing models
- Heat transfer between film, droplets and wall
- Multi-component species transport and evaporation / thermolysis

Urea-Injection and NH3 Formation

Detailed modeling of spray, evaporation, wall interaction,... is basis to predict NH3 formation and uniformity

Cleers Workshop 11

NH3 Distribution

NH3-Concentration past the hydrolysiscatalyst (ppm), application example without mixer

SCR Model

Transient 1D 2-Phase model for an arbitrary number of gas and surface species¹

- Storage and desorption of NH3 is explicitly taken into account
- The reaction model is reduced to 4 major reactions

1: see SAE 2005-01-0948

SCR, NOx-Conversion Performance

Simulation/experiment for NH3desorption during dosing-step

Simulation/experiment for 108 load points

Pipe Model

Transient 2D heat transfer model for an arbitrary number of wall layers¹

- Main features:
 - Conduction in opaque layers
 - Radiation
 - Free convection in air-gaps
 - Free and forced convection to ambient
 - Temperature dependent physical properties

Pipe Wall Heat Loss Simulation

Dual wall pipe, effect study

Impact of radiation in the gap is significant

Simulation/experiment single wall pipe

Pipe outlet temperatures are well covered by the model (internal heat transfer factor was adapted)

Boundary Conditions for Drive Cycle

Inlet Conditions:

- Engine Row Emissions for a WHTC given for cold and warm engine conditions
- Outlet Conditions:
 - Constant ambient back pressure

WHTC Simulation, Pipe Insulation Study I

- Heat-up phase:
 - Small impact of pipe insulation
- High-load phase:
 - Dual-wall insulation shows higher temperatures
- Low-load phase:
 - Dual-wall insulation holds SCR operating temperature

Mean DOC/DPF/SCR temperatures during cold and warm WHTC

WHTC Simulation, Pipe Insulation Study II

AVL

Summary and Conclusions

- Demonstration of a 1D/3D aftertreatment system simulation framework by the example of a heavy-duty application
 - All components are pre-calibrated with experimental data
 - BOOST is used to investigate the overall system is investigated in 1D
 - FIRE is used to perform 3D detail simulations
- Sufficient modeling depth of all components is essential
- Simulation approach can be used for various system configurations