Thermal Transient Effects on the Performance of Catalysts for the Selective Catalytic Reduction of NO_x

> 11th CLEERS Workshop May 15, 2008 Dearborn, Michigan

> > Jonathan L. Male

Pacific Northwest National Laboratory Richland, WA

Pacific Northwest National Laboratory ...delivering breakthrough science and technology

CERBR

Outline

Purpose of the work

- Approach
- Chemisorption of NH₃ on monoliths
- Thermal transient micro-reactor
 - Experimental controls
 - Effects of reactant concentrations
 - Thermal transient cycles
- Future Work
- Summary

Purpose of Work

- Accelerate the transition of the testing of powders under steady state conditions to transient test regimes
- Assess thermal transient capabilities of urea-SCR catalysts
- Mechanistic understanding of zeolitic urea-SCR catalysts for a pathway to optimize urea usage and enhance fuel efficiency
- Aid in mechanistic studies on steady and unsteady state of SCR catalysts in order to enable better models and improved transition to larger scale engine testing

3

Approach

- New and future regulations not only have average emission targets over entire test cycle but also "not-to-exceed" levels which need to be understood
- Upon integration of emission control technologies slippage from one component can impact a downstream process e.g. SCR-DPF¹
- Probe thermal transient conditions within the standard SCR catalyst in order to yield optimal efficiency and aid in the pathway to integration with other components
- Examine the adsorption characteristics of NO_x and ammonia on an industrial standard zeolitic SCR catalyst
 - Examine thermal transients effects on NH₃, NO, N₂O, NO₂

1 Girard, J.W. et al SAE 2007-01-1572.

4

Chemisorption Studies on Monoliths

- Adsorption of NO, NO₂ or NH₃ on a monolith (zeolitic urea-SCR catalyst obtained from BASF, 400 cpsi, 183 µm wall thickness,1.8 g/in³ coating) at probe temperatures and subsequent desorption ramping to 650 °C
- First NH₃ desorption peak, 284-351 °C, has first order kinetics and E_{desorption} = 77 ± 8 kJ mol⁻¹ ¹
- Second NH₃ desorption peak, 453-625 °C, may be second order kinetics, additional data is required

Monolith Capacity of chemisorbed NH₃

NH₃ TPD at Heating rate 20 °C/min

- 1 Webb, P.A.; Orr C. Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corp., Norcross, GA 1997.
- 2 Chatterjee, D. et al SAE 2007-01-1136.

Thermal Transient Micro-Reactor

- Standard BASF monolith catalyst was crushed¹ for transient powder experiment (70-100 mesh) and tested under standard conditions: NO_x 350 ppm, 350 ppm NH₃, O₂ 14%, CO₂ 5%, H₂O 1- 4.5 %, balance dry N₂, total flow 210 mL/min (116,000 scm³ hr⁻¹ g⁻¹)
 - Inconel 600 reactor, with thermocouples in the reactor bed and between the resistive heater and the body
- Analyses performed with: Chemiluminescent detector - detection limits: ≤ 1 ppm NO_x, response: 3.5 s. FTIR - detection limits: 20 ppm NO, 10 ppm NO₂, 5 ppm N₂O, 10 ppm NH₃, 0.1 ppm CO₂, response: < 6 s</p>

1 Chatterjee, D. et al SAE 2007-01-1136.

Thermal Transient Temperature Profile

- Internal and external thermocouples work with predictive component, a peak detection component and a feedback component to match heavy duty FTP target.
- Average difference between targeted temperature and catalyst temperature 0.46 ± 9.72 °C.
 The predictive of

The predictive algorithm drives the heater profile

Predicted(t) = $A^*d(t) + B^*d'(t)$ + $C^*sin(\pi^*d'(t)/max d'(t))^*d'(t)$ + D

Feedback component applied during stable portions: Sp' = Sp \pm 0.5*Sp(error²/error band²) Sp' – modified external target

Sp – original external target

Khalek, I. A. Presentation at Ultrafine Particle Conference May 1-2, 2006.

Control Reactions for Thermal Transient Micro-Reactor

- The catalyst is supported on reticulated vitreous carbon foam 12.4 pores/cm² (2 x 3.8 mg/0.14 mL)
- Under O_2 and H_2O no CO was detected, minor CO_2 amounting to 47 μ g of carbon/run

700

Under NO₂, O₂ and H₂O, an average of 44 ppm CO₂ was observed amounting to 99 µg of carbon/run

O_2 14 %, H_2O 2.6%, N_2 balance, total flow 210 mL/min.

 $\rm O_2$ 14 %, $\rm H_2O$ 2.2%, 342 ppm $\rm NO_2, \, N_2$ balance, total flow 210 mL/min.

Pacific Northwest National Laboratory ...delivering breakthrough science and technology 450

Analytical Techniques for Thermal Transient Micro-Reactor

- Added FT-IR to reactor to expand capability for more analytes (CO, CO₂, H₂O, NO, N₂O, NO₂)
- Analogous good correlation between FT-IR and NO_x chemiluminescent analyzer demonstrated for NO_x
- Good corroboration between the analytical techniques

NO 343 ppm, NH₃ 344 ppm, CO₂ 4.5%, O₂ 14 %, H₂O 2.6%, balance N₂, total flow 210 sccm.

Sample's Gaseous History

- Time on stream impacts conversions: NO_x conversion : 71, 72, 74%, NH₃ slip: 14, 15, 16% for starting heating cycle 5, 65, 125 s after stream enters reactor
- Necessary to cool post reaction under N_2 , 2% H_2O
- Protocol for studies was 5 s after stream starts and cooling under wet N₂

NO 362 ppm, NH₃ 353 ppm, CO₂ 4.9%, O₂ 14 %, H₂O 2.0%, balance N₂, total flow 210 sccm.

Pacific Northwest National Laboratory ...delivering breakthrough science and technology

5 s on stream

125 s on stream

Thermal Transient Test of Standard SCR Reaction

Standard SCR reaction - significant amounts of NO during cold or cooling sections, release of stored reservoir of NH_3 at rapid temperature increases leading to NH_3 slip

Fractional average NO_x conversion 0.71, fractional average ammonia slip 0.14

NO 362 ppm, NH₃ 353 ppm, CO₂ 4.9%, O₂ 14 %, H₂O 2.0%, balance N₂, total flow 210 sccm.

Thermal Transient Test of NO₂ SCR Reaction

 NO_2 SCR reaction – large amounts of N_2O during rapid heating presumed via NH_4NO_3 decomposition 150-275 °C.¹

First and last quadrant not symmetrical

 NO_2 351 ppm, NH_3 467 ppm, CO_2 5.0%, O_2 14 %, H_2O 1.8%, balance N_2 , total flow 210 sccm.

1 Ciardelli, C. et al Appl. Catal. B; Environmental **2007**, 70, 80-90.

2 Schuler A. et al *SAE* 2008-01-1323.

Thermal Transient Test of Fast SCR Reaction

Fast SCR – NO and N₂O looks like a linear combination of prior 100% NO or 100% NO₂ runs (350 ppm of each individually))

NH₃ is markedly different (modest amounts detected only at highest temperatures) $2NH_3 + NO+NO_2 \longrightarrow 2N_2 + 3H_2O$

> 400 450 NO N20 400 350 Fractional 350 Concentration (ppm) 300 average NO_x Catalvst Temperature 300 250 conversion 0.77, 250 200 fractional 200 150 150 average 100 100 ammonia slip 50 50 0.07 0 231 693 1155 462 924 Time (s)

NO 177 ppm, NO₂ 172 ppm, NH₃ 343 ppm, CO₂ 4.9%, O₂ 14 %, H₂O 1.9%, balance N₂, total flow 210 sccm.

Sensitivities of Transient Thermal Cycle to Concentration Changes

- Fast SCR conditions are desirable particularly for impact on NH₃ slip
- NO/NO₂ ratio is quite robust 0.3-1.0 with NH₃:NO_x 1:1

OPacific Northwest National Laboratory ...delivering breakthrough science and technology

Fractional

verage

٦

Ammonia Slip

Thermal Transient Cycles

Assuming HCCI idle is reduced to 125 °C and heavy load is reduced to 325 °C and applying the change across the HDD FTP

HDD FTP % NO_x conversion 77% NH₃ slip 7%, Estimated HCCI NO_x conversion 69% and 12% NH₃ slip as expected due to the lower temperatures

NO 177 ppm, NO₂ 172 ppm, NH₃ 343 ppm, CO₂ 4.9%, O₂ 14 %, H₂O 1.9%, balance N₂, total flow 210 sccm.

Estimated HCCI

NO 183 ppm, NO₂ 184 ppm, NH₃ 344 ppm, CO₂ 5.0%, O₂ 14 %, H₂O 1.8%, balance N₂, total flow 210 sccm.

Ammonia Interaction During Thermal Transient Cycle

In the absence of O₂ an average of 351 ppm NH₃ was observed over the cycle, 4% conversion and 96% NH₃ released

The largest release corresponding to the 284-351 °C adsorption peak

Upon addition of 14% O_2 an average 225 ppm NH₃ was observed over the cycle, 36% conversion and 64% NH₃ released ¹

Ammonia Usage During Thermal Transient Test

- Small section of thermal transient FTP cycle isolated (635-727 s) and ammonia release compared for whole cycle versus section
 - Good agreement between the whole cycle and section at the maximum temperature
- Differences ascribed to the non-steady state conditions during the cycle

NH₃ 356 ppm, CO₂ 5.0%, O₂ 14 %, H₂O 2.0%, balance N₂, total flow 210 sccm.

Future Work

Continue the characterization of storage and release mechanisms for NO, NO₂, N₂O and NH₃ on zeolitic urea-SCR catalyst:

- Activation energy of adsorption and desorption of gaseous species
- probe competitive adsorption rates (CO₂, H₂O, C₃H₆) in pathway to integration of SCR with other emission control technologies
- Thermal transient reactor study to:
 - Continue to probe reactant interactions (H₂O, CO₂, C₃H₈) to seek optimal performance
 - Install rapid reaction stream switching capability to enable controlled variability in concentrations of species and more closely mimic engine testing
 - Install de-polymerization of cyanuric acid system to enable probing both isocyanic acid and NH₃ as reductant

Future Work - Modeling

- Development of kinetic models to investigate the dynamics of the catalyst under transient thermal operation
- Comprehensive analysis of the impact of the SCR catalyst dynamics from a systems perspective

Current Status

- A kinetic model in combination with micro reactor experiments is being developed and is being studied for various test cases
- Models are developed in 'C' and are incorporated into Matlab/Simulink for model based analysis

for Interfacial Catalysis

New CLEERS Standard Urea-SCR Catalyst

- Obtained a new commercial urea-SCR catalyst to act as a standard
- Catalyst is based on iron zeolite technology (400 cpsi, 0.0065" substrate wall thickness, washcoat loading 160 g/L, SA 77 m²/g, 0.5 % atomic concentration Fe in washcoat)
- Monolith bricks at both PNNL and ORNL for testing
- Collaboration with Josh Pihl and Todd Toops at ORNL to use DRIFTS to examine catalyst bound species and competing species
- Installing in-situ Raman at PNNL to capture complimentary data at PNNL

Summary

Initiated experimental plan characterizing adsorption/desorption phenomena within a zeolitic urea-SCR catalyst

- Effective interaction of reactants with active sites is important for efficient urea usage
- Demonstrated a diesel transient temperature cycle on a zeolitic SCR catalyst powder sample
 - Enables increased fundamental understanding of transient effects / unsteady state conditions on catalysts
 - Demonstrated the same trend of relative performance of standard-, 100% NO₂-and fast-SCR reactions over thermal transient cycle – the fast SCR has optimal usage of ammonia
 - Begun to look at sections of the transient cycle in more detail
 - The ability to test small powder samples for transient performance enables faster technology transfer to engine testing of viable catalysts and a means to probe "not-to-exceed" limits in the laboratory

Acknowledgements

- Maruthi N. Devarakonda, Darrell R. Herling, George G. Muntean, Kenneth G. Rappé, Russell G. Tonkyn, Diana N. Tran
- BASF and Umicore
- Ken Howden and Gurpreet Singh Department of Energy, OVT
- CLEERS

