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Introduction

 PSAT : Powertrain System Analysis Toolkit
- sponsored by DOE, effort led by ANL
contributions from various auto companies

package of modular simulation tools to test various
powertrain configurations (e.g., hybrid concepts, HCCI/PCCI
combustion engines)

written mostly in MATLAB, Simulink

ORNL is tasked with generating experimental data on engines
and after-treatment devices and developing models

For more information, visit PSAT website at
www.transportation.anl.qov/software/PSAT/index.html
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Engine and Aftertreatment Model Development

* Engine models/maps
- performance, fuel costs, emissions

- conventional and advanced combustion modes (HCCI, PCCI,
LTC etc.)

- regular and emerging fuels (gasoline, diesel, ethanol etc.)
* After treatment models

- performance, costs (fuel penalty, aging etc.)

- systems integration and control

- failure modes
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Recent Accomplishments

* Generated engine maps for GM 1.9L engine operating in regular
and HECC (PCCI) modes

 Engine warmup model to simulate transient behavior following a
cold/warm start using steady state maps (particularly important
for simulating hybrid vehicles where engine stops, cools down
and then restarts)

* Model for a Pd/Rh based 3-way catalyst for stoic engines
- contains BaO (improves WGS activity, CO, C,H; conversion)
- Possibility of NOx storage

* Vehicle speed based heat loss models for after-treatment
devices (critical for simulating hybrid vehicles)

* Aging and desulfation effects in LNT model

* Simulation of a parallel hybrid vehicle (Honda-Civic
configuration) exhaust after treatment using a LNT
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Standard Engine Mapping Approach for PSAT
Relies on Experimental Data Tabulation

* Detailed speed-load sweep
provides data to map engine (e.g.,
109 operating conditions for MB
1.7-L)

* Data includes fuel consumption,
exhaust temperature, exhaust
mass flow rate, and regulated
pollutants

* Square matrix generated by
nearest-neighbor interpolation
based on measured data
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LNT and DPF Regeneration States
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Regeneration maps derived from limited data, simulations
Engine switching triggered by LNT/DPF state indicators, engine supervisor

assessment
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Prediction of transients using steady state maps
for the Mercedes 1.7L engine
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* Transient profiles of most species are predicted well

* Engine-out temperature predictions (made using steady state
maps and engine thermal model) matches well with the

experimental data
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LNT Simulink Model

* Based on a Chalmers/GM model (Ind. Eng. Chem. Res. 2005, 44, 3021)
- NOx capture in nitrite/nitrate form and C,H, based regeneration
- NO<=>NO, inter-conversion
- Diffusion resistance to bulk nitrite/nitrate storage (shrinking core)

* Extensions
- CO/H, based regeneration (as in CLEERS protocol)
- CO equivalent to H2 in terms of reducing capacity
- Oxygen storage
- calibrated using CLEERS protocol data for a Umicore catalyst
- Effects of aging, sulfation/desulfation
- Heat loss model

- NH3 breakthrough model — empirical, qualitative (quantitative tracking may be
needed for simulating LNT-SCR combinations)
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LNT Simulink Model :deficiencies

* Nitrites are not converted to nitrates (approximation works well for
short capture times)

* Bulk nitrition/nitration histories are destroyed while simulating
regeneration (shrinking core model is not applicable to model bulk
nitrition/nitration in zone 2)

* zone 2 length as a fraction of the reactor length should be low for
the model to be accurate

State of the catalyst immediately at the beginning of lean phase
after partial regeneration

Stored Zone 1 Zone 2 Zone 3 [ nitrite/nitrate
NOx
/ [l carbonate
=X
A g J Zone 3 : does not encounter reductant
Zone 1: fully regenerated Zone 2: bulk nitrates remain

(no regeneration at all)
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Simulation of a MECA catalyst performance in
engine tests
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Simulation of a MECA catalyst performance in
FTP tests
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LNT-out NOx feedback based regen:
optimal performance

Request Raw LNT Emissions

Speed/Load . ExliguST s a st e I Input Out
o] Engine >, DPF/Oxy | o] LNT |

model ___Cat_ 1 model |

4 models l
Regeneration | sensor

commanded?
Engine |, Dyt N e 5 iy~ | o=
supervisor Regeneration parameters (e.g., supervisor

magnitude, duration)
e LNT G?udpervisor monitors LNT state and requests regeneration when
neede

* Engine supervisor commands regeneration when speed/load/other
constraints permit

 Regeneration command switches engine to LNT regeneration map for
specified period

 Engine supervisor must also prioritize LNT regeneration relative to DPF
regeneration and other emission control requests
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Regeneration schemes

* No regeneration when LNT-out T < 150°C
°* Minimum period of lean operation between regenerations

* Downstream NOx sensor based engine control
- regenerate if LNT-out NOx conc exceeds a user-specified level
- fixed regeneration interval (user-specified)

- Optimal but not currently practical (NOx sensors are expensive, hard to
measure NOx at low concentrations)

* Downstream UEGO sensor based engine control
— regenerate at fixed intervals
— stop regen when A/F drops below a specified value (e.g., 14.1)
— reductant breakthrough unavoidable
* Engine map based control : no feedback
- Integrating NOx influx into the LNT

- start a regeneration when the integrated NOx exceeds a given fraction
(say 25%) of the storage capacity

- Controller needs good estimate of storage capacity
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Additions to the LNT Simulink model
+ NH3_,~0.1CO._ (CO, —CO__)exp(9.3CO,)

— derived from CLEERS test protocol data generated for Umicore catalyst

— NH3 breakthrough possible only is there is a deficit of CO across the reactor
 Convective heat loss model

— heat transfer coefficienth_ = Nu_  (thermal conductivity)/D__

. Nuconv » I:Nuforced4 G Nufree4]1/4

— Nu,, ., = 0.0297 Re**Pr'”, Nu, = 0.6 + 0.387 Ra"/%/[1+(0.6/Pr)®16]8/27
—h =40 W/(m2K) is often used in 3-way catalyst modeling

— Re is based on vehicle speed and catalyst can dimensions

— Vehicle speed available from PSAT
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Additions to the LNT Simulink model

* Aging, sulfation/desulfation effects

— Initial NOx storage capacity is multiplied by a factor y to account for

aging, sulfation/desulfation based on mileage (M, .)

— assuming 30-40ppm fuel sulfur level

4T exp(-3x1 0 Musage) exp{ F (Tdes’ des) s F2[m°d(MusagelMdes)]}
— M, : miles between desulfation events

— T 4o - Max desulfation T

— Ndes - number of desulfation events

— Nitrate/nitrite formation reaction rates and noble metal surface area
are multiplied by a and § to account for aging, sulfation/deS

> 0= G1(Tdes! des) G I:Mdes’ mOd(MusageIMdes)]
A B =0.92 G1(Tdes’ des) +0.08

— correlations obtained from experimental data (Theis et al., SAE paper
2004-01-1493; Nguyen et al., SAE paper 2007-01-0470; Toops et al., Cat.
Today, 123, pp 285-292)
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Effects of rapid aging at various
temperatures on storage capacity
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NOXx storage capacity falls rapidly
once catalysts are exposedto T
exceeding 900°C



Effects of Sulfation/desulfation on performance
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UDDS cycle simulation with regen
strategy based on downstream
NOx sensor (i.e., optimal regen
strategy)

Desulfation done at 5000 miles
intervals

NOx reduction efficiency drops
rapidly with sulfation

Post desulfation NOx conversion
seems to level off with increasing
mileage

Desulfation results in increased
NOx conversion with out a big
change in fuel penalty



Simulation of LNT on a hybrid vehicle
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Powertrain configuration of a parallel hybrid vehicle
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Parallel hybrid (Honda Civic
configuration) with a 1.7L

Mercedes engine

Fuel efficiency of the hybrid

configuration is nearly 50%
higher than in case of
conventional configuration (using
the same engine in both cases)

Compare LNT performance on a

hybrid vehicle to its performance
on a conventional vehicle

— identify potential problem when using
LNTs on hybrid vehicles which have
intermittent engine operation



Simulation of LNT (with optimal regen strategy) on
a hybrid vehicle
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Future Plans
* Update and supplement LNT model

- Other regeneration schemes (suggestions welcome)
- NH, formation kinetics (to simulate LNT+SCR combinations)
* Expand engine maps
- DPF regeneration states=> full FTP capability
- Alternative and conventional fuels (e.g., ethanol, biodiesel)
Update the 3-way catalyst model for stoic engines

- Current version based on guestimated precious metal loading and
O, storage capacity

- Chemical analysis being done at present

e Complete the SCR model

- Dosing strategies (suggestions welcome)
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Contact information

* PSAT

- Aymeric Rousseau (arousseau@anl.gov)

* Engine & aftertreatment models
- Stuart Daw (dawcs@ornl.gov)

* Model details

- Kalyana Chakravarthy (chakravartvk@ornl.gov)
- Zhiming Gao (gaoz@ornl.gov)
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