An update on Lean NOx trap modeling in PSAT

Zhiming Gao, Kalyana Chakravarthy, Dean Edwards & Stuart Daw
Oak Ridge National Laboratory

11th DOE CLEERS workshop
May 13, 2008
University of Michigan, Dearborn, MI
Introduction

• **PSAT : Powertrain System Analysis Toolkit**
 - sponsored by DOE, effort led by ANL
 - contributions from various auto companies
 - package of modular simulation tools to test various powertrain configurations (e.g., hybrid concepts, HCCI/PCCI combustion engines)
 - written mostly in MATLAB, Simulink
 - ORNL is tasked with generating experimental data on engines and after-treatment devices and developing models
 - For more information, visit PSAT website at www.transportation.anl.gov/software/PSAT/index.html
Engine and Aftertreatment Model Development

- Engine models/maps
 - performance, fuel costs, emissions
 - conventional and advanced combustion modes (HCCI, PCCI, LTC etc.)
 - regular and emerging fuels (gasoline, diesel, ethanol etc.)

- After treatment models
 - performance, costs (fuel penalty, aging etc.)
 - systems integration and control
 - failure modes
Recent Accomplishments

- Generated engine maps for GM 1.9L engine operating in regular and HECC (PCCI) modes
- Engine warmup model to simulate transient behavior following a cold/warm start using steady state maps (particularly important for simulating hybrid vehicles where engine stops, cools down and then restarts)
- Model for a Pd/Rh based 3-way catalyst for stoic engines
 - contains BaO (improves WGS activity, CO, C$_3$H$_8$ conversion)
 - Possibility of NOx storage
- Vehicle speed based heat loss models for after-treatment devices (critical for simulating hybrid vehicles)
- Aging and desulfation effects in LNT model
- Simulation of a parallel hybrid vehicle (Honda-Civic configuration) exhaust after treatment using a LNT
Standard Engine Mapping Approach for PSAT Relies on Experimental Data Tabulation

- Detailed speed-load sweep provides data to map engine (e.g., 109 operating conditions for MB 1.7-L)
- Data includes fuel consumption, exhaust temperature, exhaust mass flow rate, and regulated pollutants
- Square matrix generated by nearest-neighbor interpolation based on measured data
LNT and DPF Regeneration States

- Regeneration maps derived from limited data, simulations
- Engine switching triggered by LNT/DPF state indicators, engine supervisor assessment
Prediction of transients using steady state maps for the Mercedes 1.7L engine

- Transient profiles of most species are predicted well
- Engine-out temperature predictions (made using steady state maps and engine thermal model) matches well with the experimental data
LNT Simulink Model

 - NOx capture in nitrite/nitrate form and C₃H₆ based regeneration
 - NO<=>NO₂ inter-conversion
 - Diffusion resistance to bulk nitrite/nitrate storage (shrinking core)

- Extensions
 - CO/H₂ based regeneration (as in CLEERS protocol)
 - CO equivalent to H₂ in terms of reducing capacity
 - Oxygen storage
 - calibrated using CLEERS protocol data for a Umicore catalyst
 - Effects of aging, sulfation/desulfation
 - Heat loss model
 - NH₃ breakthrough model – empirical, qualitative (quantitative tracking may be needed for simulating LNT-SCR combinations)
LNT Simulink Model: deficiencies

- Nitrites are not converted to nitrates (approximation works well for short capture times)
- Bulk nitrition/nitration histories are destroyed while simulating regeneration (shrinking core model is not applicable to model bulk nitrition/nitration in zone 2)
- Zone 2 length as a fraction of the reactor length should be low for the model to be accurate

State of the catalyst immediately at the beginning of lean phase after partial regeneration

- Zone 1: fully regenerated
- Zone 2: bulk nitrates remain
- Zone 3: does not encounter reductant (no regeneration at all)
Simulation of a MECA catalyst performance in engine tests

- Model was calibrated using a long NOx capture experiment
 - adjust NOx storage capacity
 - all other model parameters (kinetic rates) fixed at values determined for the Umicore catalyst
- Calibrated model predicts the steady state engine data well

Predicted and experimental NOx profiles

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY
Simulation of a MECA catalyst performance in FTP tests

- Combination of a UDDS and US06 cycles
- Regeneration done using syn-gas (CO+H2) injection into the exhaust
- Predicted overall NOx conversion (93%) compares well against experimentally determined value (94%)
LNT-out NOx feedback based regen: optimal performance

- LNT supervisor monitors LNT state and requests regeneration when needed.
- Engine supervisor commands regeneration when speed/load/other constraints permit.
- Regeneration command switches engine to LNT regeneration map for specified period.
- Engine supervisor must also prioritize LNT regeneration relative to DPF regeneration and other emission control requests.
Regeneration schemes

- No regeneration when LNT-out T < 150ºC
- Minimum period of lean operation between regenerations
- Downstream NOx sensor based engine control
 - regenerate if LNT-out NOx conc exceeds a user-specified level
 - fixed regeneration interval (user-specified)
 - Optimal but not currently practical (NOx sensors are expensive, hard to measure NOx at low concentrations)
- Downstream UEGO sensor based engine control
 - regenerate at fixed intervals
 - stop regen when A/F drops below a specified value (e.g., 14.1)
 - reductant breakthrough unavoidable
- Engine map based control : no feedback
 - Integrating NOx influx into the LNT
 - start a regeneration when the integrated NOx exceeds a given fraction (say 25%) of the storage capacity
 - Controller needs good estimate of storage capacity
Additions to the LNT Simulink model

- $\text{NH}_3_{\text{out}} \sim 0.1 \text{ CO}_{\text{in}} (\text{CO}_{\text{in}} - \text{CO}_{\text{out}})/\exp(9.3\text{CO}_{\text{in}})$
 - derived from CLEERS test protocol data generated for Umicore catalyst
 - NH3 breakthrough possible only if there is a deficit of CO across the reactor

- Convective heat loss model
 - heat transfer coefficient $h_{\text{conv}} = \text{Nu}_{\text{conv}}$ (thermal conductivity)/D_{cat}
 - $\text{Nu}_{\text{conv}} = [\text{Nu}_{\text{forced}}^4 + \text{Nu}_{\text{free}}^4]^{1/4}$
 - $\text{Nu}_{\text{forced}} = 0.0297 \text{ Re}^{4/5}\text{Pr}^{1/3}$, $\text{Nu}_{\text{free}} = 0.6 + 0.387 \text{ Ra}^{1/6}/[1+(0.6/\text{Pr})^{9/16}]^{8/27}$
 - $h = 40 \text{ W/}(\text{m}^2\text{K})$ is often used in 3-way catalyst modeling
 - Re is based on vehicle speed and catalyst can dimensions
 - Vehicle speed available from PSAT
Additions to the LNT Simulink model

- **Aging, sulfation/desulfation effects**
 - Initial NOx storage capacity is multiplied by a factor χ to account for aging, sulfation/desulfation based on mileage (M_{usage})
 - assuming 30-40ppm fuel sulfur level
 - $\chi = \exp(-3 \times 10^{-6} M_{usage}) \exp\{- F_1(T_{des}, N_{des}) - F_2[\text{mod}(M_{usage}/M_{des})]\}$
 - M_{des}: miles between desulfation events
 - T_{des}: max desulfation T
 - N_{des}: number of desulfation events
 - Nitrate/nitrite formation reaction rates and noble metal surface area are multiplied by α and β to account for aging, sulfation/desulfation
 - $\alpha = G_1(T_{des}, N_{des}) G_2 [M_{des}, \text{mod}(M_{usage}/M_{des})]$
 - $\beta = 0.92 G_1(T_{des}, N_{des}) + 0.08$
 - correlations obtained from experimental data (Theis et al., SAE paper 2004-01-1493; Nguyen et al., SAE paper 2007-01-0470; Toops et al., Cat. Today, 123, pp 285-292)
Effects of rapid aging at various temperatures on storage capacity

- NOx storage capacity falls rapidly once catalysts are exposed to T exceeding 900°C
Effects of Sulfation/desulfation on performance

- UDDS cycle simulation with regen strategy based on downstream NOx sensor (i.e., optimal regen strategy)
- Desulfation done at 5000 miles intervals
- NOx reduction efficiency drops rapidly with sulfation
- Post desulfation NOx conversion seems to level off with increasing mileage
- Desulfation results in increased NOx conversion with out a big change in fuel penalty
Simulation of LNT on a hybrid vehicle

- Parallel hybrid (Honda Civic configuration) with a 1.7L Mercedes engine
- Fuel efficiency of the hybrid configuration is nearly 50% higher than in case of conventional configuration (using the same engine in both cases)
- Compare LNT performance on a hybrid vehicle to its performance on a conventional vehicle
 - identify potential problem when using LNTs on hybrid vehicles which have intermittent engine operation
Simulation of LNT (with optimal regen strategy) on a hybrid vehicle

Conventional configuration
NOx reduction efficiency: 94%
fuel penalty: 3.0%
NOx emission: 0.052g/mile

Hybrid configuration
NOx reduction efficiency: 85%
fuel penalty: 2.1%
NOx emission: 0.145g/mile

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY
Future Plans

- Update and supplement LNT model
 - Other regeneration schemes (suggestions welcome)
 - NH$_3$ formation kinetics (to simulate LNT+SCR combinations)
- Expand engine maps
 - DPF regeneration states=> full FTP capability
 - Alternative and conventional fuels (e.g., ethanol, biodiesel)
- Update the 3-way catalyst model for stoic engines
 - Current version based on guestimated precious metal loading and O$_2$ storage capacity
 - Chemical analysis being done at present
- Complete the SCR model
 - Dosing strategies (suggestions welcome)
Contact information

• PSAT
 - Aymeric Rousseau (arousseau@anl.gov)

• Engine & aftertreatment models
 - Stuart Daw (dawcs@ornl.gov)

• Model details
 - Kalyana Chakravarthy (chakravartvk@ornl.gov)
 - Zhiming Gao (gaoz@ornl.gov)