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Recent progress & key challenges

C. Lambert et al., DOE funded project, 2001 – 2005

• Typical AT system for lean NOx control: DOC + SCR + CDPF
• Several challenges but good progress
• Models facilitated progress
• Current modeling efforts to support vehicle programs

Low exhaust T
High NOx

NH3 slip NOx remake

Non-uniform urea
distribution

Aging
HC & S poisoning

CDPF: Catalyzed Diesel Particulate Filter

DOC :  Oxidize HC & CO; Generate NO2
SCR :  Reduce NOx (using NH3 + NO2)
CDPF: Control PM
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Outline

Diesel Oxidation Catalyst (DOC) model
• Model calibration
• Prediction of post-DOC NO2 on a vehicle

Selective Catalytic Reduction (SCR) model
• Model calibration
• Effect of stored NH3 on SCR performance
• Prediction of tailpipe NOx and NH3 slip in a vehicle

DOC+SCR system applications
• Importance of post-DOC NO2 on SCR performance
• Optimization of urea injection strategy
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hA[Tgas-Twall]

kA([ ]gas-[ ]wall)

Conduction along 
substrate

Surface reaction rate, R
(from empirical map)

hA(Twall-Tamb)

ΟΟΟΟ2222, , , , HC, CO, PM,
NO, NO2 m, Tgas

�

Heat Transfer
to Atmosphere

SIMTWC – Heat transfer equations + catalyst conversion data

Computationally non-intensive semi-empirical modeling approach

Laing et al., SAE 1999-01-3476
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DOC model – Hybrid approach to leverage data

“Information 
hooks”

Conversion map
(Data)

HC storage/release
(PDEs)

Rate inhibition
(Correlations)

Thermal 
balances
(PDEs)

DOC Model
Predict 

vehicle data

X

Tcat

Monolith channel

Optimizer
(Agent-based)

Katare & Laing, SAE 2006-01-0689
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2 nonlinear equations & 5 parameters
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At the bulk-solid interface

In the zeolite phase
Adsorption

Desorption

HC trap model
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HC (-)

Tf, in (C)

ka   1.06 x 104 m3/mol/s
kdo 3.7   x 102    1/s
Ed      9.26 kcal/mol
N 1.4 mol/kg
θθθθo      0.32 --

Desorption
Light-off

Model can predict HC adsorption, desorption and light-off
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L: Brick length

Total amount of the trap 
material (N) could be optimized

Parameter estimation
using in-house

“stochastic optimizer” *
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Line: Model; Dots: Data
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* Katare & West, Complexity, 11, 4, 2006
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Tail pipe

Model

Engine out

Engine out
Data
Model

Euro test time (s)

CO

HC

Data
Model

Euro test time (s)

Predicting engine dynamometer CO and HC emissions

Model predictions 
reasonable

2.2 L Puma engine
Post DOC

Post DOC
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NO oxidation chemistry is complex

DOC oxidizes NO to NO2 – critical for SCR operation
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Outline

Diesel Oxidation Catalyst (DOC) model
• Model calibration
• Prediction of post-DOC NO2 on a vehicle

Selective Catalytic Reduction (SCR) model
• Model calibration
• Effect of stored NH3 on SCR performance
• Prediction of tailpipe NOx and NH3 slip in a vehicle

DOC+SCR system applications
• Importance of post-DOC NO2 on SCR performance
• Optimization of urea injection strategy
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Introduction to Selective Catalytic Reduction (SCR)

• Base metals such as Cu and Fe on honeycombs
• Selectively reduce NOx to N2
• Aqueous urea sprayed onto the catalyst
• Urea ���� thermal decomposition + hydrolysis to NH3 on the catalyst

When feed NO = NO2 SCR reaction is faster

OHNONONH 2223 6444 +→++ Standard SCR

OHNNONONH 2223 64224 +→++ Fast SCR

NOx

NH3

urea ����
N2O

Undesired 
products

Desired 
product
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SCR NOx performance increases with NO2 in the feed

NO2 information from DOC model is key for simulating SCR performance

DF242 - 64hr @ 670C - SV = 30k/hr - Nom. 350ppm NOx/350ppm NH3
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Temperature programmed desorption of NH3

ka 0.61 m3 / mol s
kdo 2 x 105 1/s
Edo 20 kcal/mol
αααα 0.45 -
ΩΩΩΩ 0.23 mol NH3 / kg wc

Model
Data

Initial T: 150°C
120k miles aged SCR

NH3 on NH3 off

Temkin isotherm captures NH3 ads/des data reasonably
Model calibrated at 150°C and verified at other T and CNH3
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Calibrated model over predicted vehicle NOx conversion

DF242 - 64hr @ 670C - SV = 30k/hr - Nom. 350ppm NOx/350ppm NH3
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Outline

Diesel Oxidation Catalyst (DOC) model
• Model calibration
• Prediction of post-DOC NO2 on a vehicle

Selective Catalytic Reduction (SCR) model
• Model calibration
• Effect of stored NH3 on SCR performance
• Prediction of tailpipe NOx and NH3 slip in a vehicle

DOC+SCR system applications
• Importance of post-DOC NO2 on SCR performance
• Optimization of urea injection strategy
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System: DOC + SCR Models
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Optimum DOC for an efficient SCR ?
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But SCR performance also requires
- DOC with low thermal inertia
- Rapid warm up 

(tradeoff - HC v.s. DOC NO2 v.s. SCR XNOx)

Model provided insight into system design issues
Katare et al., Ind. Eng. Chem. Res., 46, 2007, 2445
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Urea injection strategy as a function of vehicle speed over an FTP test
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Possible to use models to come up with effective urea injection strategies
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Summary

Math models enable effective analysis and afford insight into diesel AT systems

Models leverage laboratory data to predict vehicle experiments

Optimization & statistical tools enhance model development process

DOC model
Predicted post DOC NO2 on a vehicle
Extrapolated fresh catalyst information to predict aged catalyst performance

SCR model
Motivated the need for analyzing SCR performance = f (NH3 storage)
Predicted vehicle NOx conversion and NH3 slip

DOC+SCR system analysis
Highlighted importance of NO2/NOx from DOC for SCR performance
Optimization of the urea injection strategy 
(trade-off between NOx conversion & NH3 slip)
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Models
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Adapted from “Drawing Hands”, M C Escher, 1948

Experiments and models drive each other leading to insight
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Model calibration with NH3 storage information required

NH3 storage decreases with increasing temperature
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Stochastic algorithms for parameter estimation & optimization

• Do not get trapped in local optima – more robust and efficient than a local optimizer
• Examples: Genetic algorithms, Particle swarm optimization, Differential evolution

Fitness Calculation, 
Parent Selection

Fi
tn

es
s

Operators
New 

Population

“ Survival of the fittest ”

Evolution

Initial Population 
(random)

Katare & West, Complexity, 11, 4, 2006

In-house built optimizer – can be customized

AT models are nonlinear and multi-dimensional
Local optimizers may not be efficient
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Practical utility of the model: Case study

Aged DOC inlet T for exotherm generation given fresh DOC data ?

Burn soot off DPF by down stream injection of fuel (HC)

Tin Tout

Fuel injector

Fresh DOC

Engine

HC slip

Ford vehicle

Performance: (Tout – Tin) / HC slip v.s. (Tin, SV)
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Calibrating model to fresh DOC data using pulsator map

Model calibrated with “fresh” DOC data
Predict “aged” DOC performance

120k miles
aged DOC

Fresh DOC
(Tuned)

Fresh DOC
(Pulsator)

Fresh DOC vehicle data at different Tin
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