Diesel Aftertreatment System Analyses with DOC and SCR Models

Santhoji Katare

Chemical Engineering Department Ford Research & Advanced Engineering Dearborn, MI

10th CLEERS workshop, May 1-3, 2007 Dearborn, MI

Diesel aftertreatment modeling

Jeong Kim

Paul Laing

Joseph Patterson

Advanced Diesel program

Michael Goebelbecker

Kevin Murphy

Peter Nelson

Diesel catalysis

Giovanni Cavataio

Douglas Dobson

Christine Lambert

Cliff Montreuil

Scott Williams

Recent progress & key challenges

C. Lambert et al., DOE funded project, 2001 – 2005

- Typical AT system for lean NOx control: DOC + SCR + CDPF
- Several challenges but good progress
- Models facilitated progress
- Current modeling efforts to support vehicle programs

CDPF: Catalyzed Diesel Particulate Filter

Diesel Oxidation Catalyst (DOC) model

- Model calibration
- Prediction of post-DOC NO₂ on a vehicle

Selective Catalytic Reduction (SCR) model

- Model calibration
- Effect of stored NH₃ on SCR performance
- Prediction of tailpipe NOx and NH₃ slip in a vehicle

DOC+SCR system applications

- Importance of post-DOC NO₂ on SCR performance
- Optimization of urea injection strategy

SIMTWC – Heat transfer equations + catalyst conversion data

Computationally non-intensive semi-empirical modeling approach

DOC model – Hybrid approach to leverage data

Typical pulsator map

HC trap model

$$k_{d} = k_{do} \exp(-E_{d}/RT)$$
$$k_{a}, N, \theta_{o}$$

2 nonlinear equations & 5 parameters

Model can predict HC adsorption, desorption and light-off

Research & Advanced Engineering

Katare & West, Complexity, 11, 4, 2006 9

Predicting engine dynamometer CO and HC emissions

DOC oxidizes NO to NO₂ – critical for SCR operation

Predicting post DOC NO₂ on a Ford developmental vehicle

Diesel Oxidation Catalyst (DOC) model

- Model calibration
- Prediction of post-DOC NO₂ on a vehicle

Selective Catalytic Reduction (SCR) model

- Model calibration
- Effect of stored NH₃ on SCR performance
- Prediction of tailpipe NOx and NH₃ slip in a vehicle

DOC+SCR system applications

- Importance of post-DOC NO₂ on SCR performance
- Optimization of urea injection strategy

Introduction to Selective Catalytic Reduction (SCR)

- Base metals such as Cu and Fe on honeycombs
- Selectively reduce NOx to N₂
- Aqueous urea sprayed onto the catalyst
- Urea \rightarrow thermal decomposition + hydrolysis to NH₃ on the catalyst

$$4NH_{3} + 4NO + O_{2} \rightarrow 4N_{2} + 6H_{2}O$$
 Standard SCR
$$4NH_{3} + 2NO + 2NO_{2} \rightarrow 4N_{2} + 6H_{2}O$$
 Fast SCR

When feed NO = NO₂ SCR reaction is faster

NO₂ information from DOC model is key for simulating SCR performance

Temperature programmed desorption of NH₃

Stord Research & Advanced Engineering

Calibrated model over predicted vehicle NOx conversion

Model showed the right trends but had to assume (1) low urea to NH₃ conversion or (2) very high HC deactivation to explain vehicle data

NOx performance increases with increasing NH₃ storage

Currently a standard protocol for screening catalysts

Model predicts vehicle Tail Pipe (TP) NOx

Ford

NH₃ slip prediction

Model – experiment closure: Model \rightarrow Experiment \rightarrow Data \rightarrow More accurate model

Ford

Diesel Oxidation Catalyst (DOC) model

- Model calibration
- Prediction of post-DOC NO₂ on a vehicle

Selective Catalytic Reduction (SCR) model

- Model calibration
- Effect of stored NH₃ on SCR performance
- Prediction of tailpipe NOx and NH₃ slip in a vehicle

DOC+SCR system applications

- Importance of post-DOC NO₂ on SCR performance
- Optimization of urea injection strategy

System: DOC + SCR Models

Optimum DOC for an efficient SCR ?

Model provided insight into system design issues

Urea injection strategy as a function of vehicle speed over an FTP test

Research & Advanced Engineering

Ford

Math models enable effective analysis and afford insight into diesel AT systems

Models leverage laboratory data to predict vehicle experiments

Optimization & statistical tools enhance model development process

DOC model Predicted post DOC NO₂ on a vehicle Extrapolated fresh catalyst information to predict aged catalyst performance

SCR model Motivated the need for analyzing SCR performance = f (NH₃ storage) Predicted vehicle NOx conversion and NH₃ slip

DOC+SCR system analysis Highlighted importance of NO₂/NOx from DOC for SCR performance Optimization of the urea injection strategy (trade-off between NOx conversion & NH₃ slip)

Experiments and models drive each other leading to insight

Research & Advanced Engineering

26 Adapted from "Drawing Hands", M C Escher, 1948

NH₃ storage decreases with increasing temperature

Model calibration with NH₃ storage information required

Stochastic algorithms for parameter estimation & optimization

AT models are nonlinear and multi-dimensional Local optimizers may not be efficient

- Do not get trapped in local optima more robust and efficient than a local optimizer
- Examples: Genetic algorithms, Particle swarm optimization, Differential evolution

In-house built optimizer – can be customized

Aged DOC inlet T for exotherm generation given fresh DOC data ?

Calibrating model to fresh DOC data using pulsator map

Model calibrated with "fresh" DOC data Predict "aged" DOC performance

Tin 450 254 C 400 **Data – Fresh DOC** 350 Tout – Tin) / HC slip Model – Fresh DOC 329 C 300 Model – Aged DOC 305 C 250 417 C 200 324 C 367 C 150 331 C 310 C 100 Aged catalyst can not generate exotherm 50 when $T_{in} < 300 C$ 0 100000 150000 200000 250000 300000 350000 Space velocity [1/h]

Extrapolating model to predict performance of aged DOC

Model established limits to exotherm generation strategy

