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Soot ReactivitySoot Reactivity

Soot oxidative reactivity can be defined as the ease to burn-off
Soot at low temperature and/or short time

Fuel source
Biodiesel soot vs. diesel soot

Combustion conditions
Low engine load vs. high engine load
EGR effects
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Soot Reactivity Determining FactorsSoot Reactivity Determining Factors

Chemical Properties

H/C (very low, < 0.1)
O/C (fuel dependent)
Impurities (e.g., Ca) 
Catalysts

Physical Properties

Crystallite Height (Lc)
Crystallite Width (La)
d-spacing
tortuosity

Soot Nanostructure

Bolokov,2000



5

EMS Energy Institute

Soot Morphology and NanostructureSoot Morphology and Nanostructure

HRTEM of diesel soot primary particles exhibit
“turbostratic” structure : randomly oriented 
fringes in the core, long and concentrically 
arranged fringes at the outermost

TEM of diesel soot aggregate composed
of many primary particles. 
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Soot Issues and ImplicationsSoot Issues and Implications

Diesel soot is a byproduct carcinogenic carrier results from poor combustion
Diesel particulate filter (DPF) and exhaust gasrecirculation (EGR) to control PM and 
NOx emissions, respectively. 
EGR suppresses NOx formation but increases PM emissions

The DPF physically captures the resulting PM and prevent its release to the 
atmosphere

PROBLEM:PROBLEM:

• Diesel soot requires temperature higher than 500oC to oxidize in air in DPFs
• Diesel exhaust temperature range is 250 – 350oC. 

SOLUTIONS:SOLUTIONS:

• Increase engine exhaust temperature (e.g., engine management) DPF damage
• Enhance soot oxidative reactivity (FBC, nanostructure manipulation).
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Activities at Penn StateActivities at Penn State

Fuel Formulation Engine Combustion

Soot Reactivity

affected by

characterized by

thermal properties
(TGA)physical properties chemical properties

XRD (quantitative nanostructure)
Raman (deg. of graphitization)
TEM (morphology)
HRTEM (qualitative nanostructure)
EELS (deg. of graphitization)

CHNO
XPS   (O/C, impurities)
EELS (O/C, impurities)
FTIR  (functional groups)
Chemisorption (active sites)

Isothermal
-oxidation
-kinetics

Nonisothermal
-oxidation
-kinetics 
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Activities at Penn StateActivities at Penn State

1. Previous observations on impacts of fuel formulation on diesel soot 
nanostructure and reactivity
• Enhanced reactivity of B100 soot arises from surface oxygen 

functional groups and leads to a unique oxidation process
• Diesel soot (from neat FT diesel) follows a “shrinkage core”

oxidation process

2. How will EGR affect the formation, maturation, and oxidation kinetics 
of diesel soot?
• Reduced temperature may affect the pool of soot precursors and 

alter the transition to an ordered and graphitic structure
• Shift gas composition from EGR (less O2 and more CO2) may 

exert chemical effects on the soot formation process
• i.e., three effects may be present- thermal, chemical, and
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Experimental ApproachExperimental Approach

Single Cylinder Engine
(SCE)

in

Muti-cylinder Engine
(MCE)

Co-flow Diffusion Flame
Sooting C2H4 flame

take charge

Simulated EGR
(CO2 addition)

oxidizer stream

fixed operating conditions raw exhaust soot

Soot Reactivity?Actual EGR

Thermo-Kinetic Analysis

post-flam
e soot

raw exhaust s
oot

EGR effects: dilution, thermal, or chemical?
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Experimental TechniquesExperimental Techniques

Thermogravimetric Analysis (TGA) Instrument

Reactivity Measurements
Isothermal in Air @ 450 °C
Oxygen chemisorption active sites

Kinetic Analysis
Non-isothermal in Air, heating rates (β) of 1.5, 3, 5, and 7 °C/min
o Compared to Isothermal

fast
allows for multiple runs / day (repeatability check)
less expensive
yet, less accurate

All soot samples were heat-treated in N2 to remove the volatile fraction

Supportive Techniques
X-Ray Diffraction (crystallite width active sites)
HRTEM (burning mode)
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Soot Active SitesSoot Active Sites

Active Sites are defined as the carbon atoms which have high affinity to
chemisorb and react with oxygen analogous to catalyst

2C + O2 2CO
C + O2 CO2Carbon-Oxygen reaction in a simplistic way

Nature of carbon sites C  =  C*  +  Cs  +  C(O)

unreactive reactive oxygen complex

Elementary reactions

2Cs + O2 2Cs(O)

initial active site oxygen complex

new active sites
Cs(O) CO + Cs

2Cs(O) CO2 + Cs
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Baseline Soot
Isothermal TGA in air @ 450 °C

Baseline Soot
Isothermal TGA in air @ 450 °C
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Reactivity increases with X

Active sites are renewable

Specific rate vs. conversion profiles of flame and diesel 
engines soot.
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Impact of Oxidizer Diluents
Isothermal TGA in air @ 450 °C.

Impact of Oxidizer Diluents
Isothermal TGA in air @ 450 °C.
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Characterization of Initial Active SitesCharacterization of Initial Active Sites

C = C* + ( Cs )+ C(O)

26.00.00832MCE
(20% EGR)

MCE20

11.00.00352MCE
(0% EGR)

MCE0

33.00.01056SCE
(8% CO2)

SCE8

17.00.00544SCE 
(0% CO2)

SCE0

45.00.0144Diffusion flame 
(15% CO2)

F15

22.00.00704Diffusion flame 
(0% CO2)

F0

ASAi (m2 / g)Oxygen Uptake 
(g oxygen / g soot )

Amount of Chemisorbed OxygenSoot OriginSoot Symbol

To retain the initial nanostructure of the soot, no heat-treatment was 
applied to remove the oxygen complexes C(O) from soot surfaces
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Nanostructural Analysis
The Edge Site Carbon

Nanostructural Analysis
The Edge Site Carbon

Reactivity of edge site carbon is much higher than
that of basal plane carbon: Ce/Cb α ASAi α (1/La) 

unreactive

reactive

26.00.1882.526MCE
(20% EGR)

MCE20

11.00.1692.919MCE
(0% EGR)

MCE0

33.00.1902.477SCE
(8% CO2)

SCE8

17.00.1653.030SCE
(0% CO2)

SCE0

45.00.2182.049Diffusion flame 
(15% CO2)

F15

22.00.1842.587Diffusion flame 
(0% CO2)

F0

ASAi
(m2 / g)

Ce/CbLa
(nm)

Soot OriginSoot Symbol

Vander Wal, 2004

La from XRD
Ce/Cb was determined in accordance to a theoretical 
assessment performed by Belenkov [Belenkov, 2000]
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Soot Oxidation KineticsSoot Oxidation Kinetics

How do EGR and COHow do EGR and CO22 change soot oxidation kinetics?change soot oxidation kinetics?

• Determination of the kinetic parameters of soot oxidation of diverse soot samples:
Activation Energy (Ea), Pre-exponential Factor (A), reaction order w.r.t. soot (n)

APPROACHAPPROACH

• The analysis is based on multiple nonisothermal TGA experiments

• Determine (Ea) without knowledge about the reaction model a priori

• Estimate (A) by using the compensation effect correlation

• Estimate (n) by assuming an appropriate reaction model

• Develop a simplified model that describes the oxidation process
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Soot Oxidation Kinetics
1. Activation Energy

Soot Oxidation Kinetics
1. Activation Energy

Theoretical BackgroundTheoretical Background

• A model-free isoconversional method from nonisothermal data was used
• Basis: Kissinger, Akahira, and Sunose (KAS)

2ln ln[ ]
( )
AE E

T Rg X RT
β

= −

T: T (X, β)
X: conversion
β : heating rate
g(X): reaction model
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Conversion model functions g(X) for solid state reactions

Lopez-Fonseca, 2006
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Soot Oxidation Kinetics
1. Activation Energy

Soot Oxidation Kinetics
1. Activation Energy

Isoconversional plots at various degrees of conversions
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β

= − T: T (X, β)

MCE0 MCE20
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• Ea increases with X

• Ea is not affected by
soot formation condition

• Ea averaged values are
Identical for both cases

~ 165 kJ/mol
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Soot Oxidation Kinetics
2. Pre-exponential factor

Soot Oxidation Kinetics
2. Pre-exponential factor

2ln ln[ ]
( )
AE E

T Rg X RT
β

= −

Which g (x)??

Compensation effect relationship

ln( )j jA a bE= +
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Linear relationship of the compensation effect for (a) MCE0 
soot and (b)  MCE20 soot. 

ln( )j jA a bE= +

a and b are the intercept and slope, respectively.

(A) can be unambiguously estimated using 
previously estimated model-free Ea 

(a)

β : heating rate
g(X): reaction model
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Soot Oxidation Kinetics
3. Reaction order w.r.t. soot

Soot Oxidation Kinetics
3. Reaction order w.r.t. soot

Non-isothermal oxidation can be expressed as

Integrating this equation and assuming a proper model to describe soot
oxidation:

yield

( ) exp( ) ( )aEdX A f X
dt RTβ

−
=

1

( ) [ ln(1 )]ng X X= − −

1ln( ) ln[ ( )] ln( ) ( ) ln[ ln(1 )]R p y A X
E n

β
− = − − −
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Estimation of soot reaction order, n, for (a) MCE0 soot and (b) MCE20 soot
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E n

β
− = − − −

y-axis x-axis

Slope of each line yields
a value for (n) at a given β
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Soot Oxidation Kinetics
Summary

Soot Oxidation Kinetics
Summary

0.770.971.00.900.79 0.79 n

4.3E82.8E82.7E81.86E81.3E97.3E8A (1/s)

165165153152165165Ea (kJ/mol)

MCE20MCE0SCE8SCE0F15F0

Formation of oxygen complex
2Cs + O2 2Cs(O)

Decomposition of oxygen complex
Cs(O) CO + Cs
2Cs(O) CO2 + Cs

RDS is the same &
soot follows the same
oxidation mechanism
irrespective of its 
formation condition

Ea is not affected by
soot properties

Pre-exponential factor (A) correlates with the observed decrease of (La) increased (ASA) 
Effects of active sites are incorporated implicitly in (A) 
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Soot Oxidation
Simplified Model

Soot Oxidation
Simplified Model

Comparison between experimental and predicted curves at constant heating rate of 1.5°C/min for
(a) MCE0 soot, and (b) MCE20 soot. 
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Soot oxidation is described By:
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Oxidation consequence of soot generated under 0% EGR

unreacted 25% oxidized 50% oxidized 75% oxidized

Oxidation consequence of soot generated under 20% EGR

unreacted 25% oxidized 50% oxidized 75% oxidized
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CONCLUSIONSCONCLUSIONS

CONCLUSIONS:CONCLUSIONS:

The addition of EGR

• enhances the oxidative reactivity of the soot

• has no effect on the activation energy of soot oxidation,  the 
observed increased in reactivity is attributed solely to the 
increase of active sites which are incorporated implicitly in the 
pre-exponential factor

• facilitates oxygen dissociation on soot surfaces

• does not affect the rate-limiting step of the oxidation reaction
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Thank you for your attention!


