Enhancing Stability of Platinum on Silica by Surface Modification

- Application to CO Oxidation -

Mi-Young Kim, Jae-Soon Choi, Todd J. Toops

Emissions and Catalysis Research Group Oak Ridge National Laboratory

May 1, 2012

Outline

1. The aim of this study — Preparation of highly dispersed platinum catalyst with sulfur tolerance and hydrothermal stability

CAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT O

1. The aim of this study

Preparation of highly dispersed platinum catalyst with sulfur tolerance and hydrothermal stability

Designing active & stable Pt catalyst using silica

□ Alumina as a support for diesel oxidation catalyst

- Advantage: good interaction with platinum
- Disadvantage: the formation of aluminum sulfate (Al₂(SO₄)₃)

induces severe catalyst deactivation.

□ Silica as a support for platinum metal

- Advantage: chemical inertness (no S adsorption)

high surface area and thermal stability

processibility owing to surface hydroxyl group

- Disadvantage: Pt can easily sinter on silica due to weak platinum interaction.

To have both good dispersion and sulfur tolerance

Two approach methods for the preparation of platinum catalysts

- Incorporation of metal oxide layer (TiO₂, ZrO₂) on silica
- Treatment of impregnated platinum precursor with hydrogen peroxide

First method: incorporation of metal oxide layer on silica

New Solid Acid and Bases, 1989, Elsevier, 113 p.

Oak Ridge National Laboratory

Preparation methods of MO_2 -SiO₂ (M = Ti or Zr)

Туре	Preparation method	Remark			
Physically mixed	Solid state mixing Weak Van der Waals forces Interaction				
Chemically bonded	Impregnation	SiO_2 powder + M(NO ₃) ₄ aqueous solutions (M = Ti or Zr)			
	Co-precipitation	Si precursor + M precursor \rightarrow pH adjustment			
	Sol-gel	Si precursor + M alkoxide \rightarrow hydrolysis, condensation			
		SiO ₂ powder + M alkoxide \rightarrow reaction between alkoxide and OH group of silica			

Among these methods, the sol-gel method is the most effective method for controlling textural and surface characteristics of mixed oxide.

Preparation method in this study

Second method: hydrogen peroxide treatment

Our preparation procedure of highly dispersive platinum catalysts

Catalysts characterized after sulfation and hydrothermal aging

Preparation of platinum catalysts (1wt%)

- Pt/Ti-Si-H₂O₂, Pt/Zr-Si-H₂O₂, Pt/Si, Pt/AI
- Catalyst characterization
 - XRD, TEM, EXAFS, XANES, TPD, TPR
- □ Consecutive catalytic performances: CO oxidation
 - To verify the sulfur tolerance and hydrothermal stability of platinum catalysts

Solar Ridge National Laboratory

Highly dispersed platinum on TiO₂-, ZrO₂- incorporated silica

XRD results of fresh catalysts

Pt peak on Pt/Si

- Aggregation of platinum
- No Pt peak on Pt/Ti-Si-H₂O₂ and Pt/Zr-Si-H₂O₂
 - Improvement of platinum dispersion due to metal oxide incorporation

NERGY

Dispersion improvement through incorporating TiO₂ and ZrO₂

Aggregated platinum particle

- Large Pt particles on Pt/Si
 - Diameter of around 20 nm
- Medium Pt particles on Pt/Al
 - Diameter ranged in 5~7 nm
- Small platinum particles on Pt/Ti-Si-H₂O₂ and Pt/Zr-Si-H₂O₂
 - Diameter ranged in 1~4 nm

Zr-Si-H₂O₂ support enhances adsorption of oxygen on Pt

- High whiteline intensity: high electron deficiency
 High electron deficiency: high oxygen adsorption property and high sulfur tolerance
 [X-ray Absorption Fine Structure for Catalysts and Surface, World Scientific, 1996; Oxygen Complexes and Oxygen Activation by Transition Metals, Plenum Press, 1988; Catalyst Deactivation, Vol. 6, Elsevier, 1980.]
- Pt/Al and Pt/Zr-Si-H₂O₂ had same XANES spectra in reductive condition, however Pt/Zr-Si-H₂O₂ had higher whiteline intensity than Pt/Al in oxidative condition.
- Higher whiteline intensity of Pt/Zr-Si-H₂O₂ means stronger adsorption property of oxygen and higher sulfur tolerance in oxidative condition.

Pt/Ti-Si-H₂O₂ showed high catalytic activity in fresh catalysts

□ 1st CO oxidation over fresh catalysts

- Catalytic activity in CO oxidation (T_{50%}, °C)
 - Pt/Ti-Si-H₂O₂ (148 °C) > Pt/Zr-Si-H₂O₂ (165 °C) > Pt/Al ≈ Pt/Si (218 °C)
- Higher catalytic activity over Pt/Ti-Si-H₂O₂ and Pt/Zr-Si-H₂O₂
 - Consistent w/ higher Pt dispersion
 - Apparently due to enhanced oxygen adsorption on Pt (see XANES result)

Impact of surface modification on surface acidobasicity

□ TPD (Temperature Programmed Desorption)

- High acidity: high platinum dispersion, High basicity: high sulfur adsorption
- Pt/Al had strong acidic and basic sites, while Pt/Si had neither.
- Pt/Zr-Si-H₂O₂ had more acidic and basic sites than Pt/Ti-Si-H₂O₂.
- Thus, Pt/Ti-Si-H₂O₂ & Pt/Zr-Si-H₂O₂ show good Pt dispersion and better sulfur tolerance.

Pt/Ti-Si-H₂O₂ showed high catalytic activity after sulfation

2nd CO oxidation over sulfated catalysts

Catalytic activity in CO oxidation (T_{50%}, °C) - Pt/Ti-Si-H₂O₂ (197 °C) > Pt/Zr-Si-H₂O₂ (204 °C) > Pt/Al (236 °C) > Pt/Si (256 °C)

- Decrease of catalytic activity over all catalysts
 - $T_{50\%}$ increases ~ 50 °C vs. fresh catalysts
- Relatively high catalytic activity over Pt/Ti-Si-H₂O₂ and Pt/Zr-Si-H₂O₂
 - Consistent w/ sulfur tolerance property due to low basicity and high electron deficiency in oxidative condition

Ti & Zr-incorporated catalysts exhibit better S tolerance than Pt/Al

□ TPR (Temperature Programmed Reduction): Desulfation with 1% H₂

- Desorption peak area (μmol/g_{cat}·min)

 Pt/AI (726) > Pt/Zr-Si-H₂O₂ (370)
 Pt/Ti-Si-H₂O₂ (171) > Pt/Si (37)
 - Pt/AI had most S species which are more stable.
 - The relative low amount of sulfur desorbed and low temperature desorption peak on Pt/Ti-Si-H₂O₂ and Pt/Zr-Si-H₂O₂
 - Low basicity and high platinum dispersion, resulting in high catalytic activity after sulfation
- No sulfur desorption peak on Pt/Si
 - Although no sulfur adsorbed on Pt/Si (no basicity), its low platinum dispersion (no acidity) induces low catalytic activity after sulfation.

CAK RIDGE NATIONAL LABORATORY

Pt/Zr-Si-H₂O₂ showed high catalytic activity after hydrothermal aging

• Catalytic activity in CO oxidation (T_{50%}, °C)

- Pt/Zr-Si-H₂O₂ (218 °C) > Pt/Ti-Si-H₂O₂ (237 °C) > Pt/Al (241 °C) > Pt/Si (256 °C)

- Higher catalytic activity of Pt/Zr-Si-H₂O₂ after hydrothermal aging
 - Due to its hydrothermal stability (see next page XRD results)

Pt/Zr-Si-H₂O₂ maintains its platinum dispersion after hydrothermal aging

□ XRD results of hydrothermal aged catalysts

- Platinum peak increase of all catalysts means the platinum sintering of hydrothermal aged catalysts - However, Pt/Zr-Si-H₂O₂ had the smallest platinum peak.
- Relatively high stability of Pt/Zr-Si-H₂O₂ after hydrothermal aging results in the best catalytic activity.

□ Various contributing factors to dispersion and S tolerance of Pt catalyst

	Dispersion (XRD, TEM, EXAFS)		Adsorption amount of	Basicity (CO ₂ TPD)	Acidity (NH ₃ TPD)	Electron deficiency	Catalytic activity
	Fresh	Aged	sulfur (TPR)			(XANES)	(CO oxidation)
Pt/Zr-Si-H ₂ O ₂	high	high	medium	low	high	high	high even after aging
Pt/Ti-Si-H ₂ O ₂	high	low	low	none	medium	medium	high after sulfation
Pt/Si	low	very low	very low	none	none	very low	low
Pt/Al	medium	low	high	high	very high	very low	medium after aging
Correlation	Catalytic activity		Adsorption of acidic SO ₂ on basic supports		Dispersion, Oxygen Adsorption, S tolerance		The highest catalytic activity of Pt/Zr-Si-H ₂ O ₂

Merit

Demerit

Conclusions

- 1. Platinum catalysts on TiO₂-, ZrO₂-incorporated silica show higher catalytic activity than Pt/Al and Pt/Si in CO oxidation.
- 2. Pt/Ti-Si-H₂O₂ has the best sulfur tolerance property and Pt/Zr-Si-H₂O₂ shows the best hydrothermal stability.
- 3. Pt/Zr-Si-H₂O₂ has thermal stability, electron deficiency, high acidity and low basicity, resulting in high platinum dispersion even after hydrothermal aging and suppression of the adsorption of acidic SO₂.

Pt/Zr-Si-H₂O₂ represents its application possibility for the diesel oxidation catalysts

Acknowledgement

Financial supports

- Research sponsored by DOE, Vehicle Technologies Program
 - Program Managers: Ken Howden, Gurpreet Singh
- Korea Research Foundation: Postdoctoral scholarship
- Oak Ridge National Laboratory: Post-graduate research associates program

Research supports

- Chonnam National University: Gon Seo
- FEERC: Bill Partridge, William J. Johnson, Josh A. Pihl
- Chonbuk National University: Sang-Wook Han, Eun-Suk Jung
- CNMS: Viviane Schwartz, Jihua Chen
- APS: Trudy Bolin Argonne

Center for Nanophase Materials Sciences

Thank you!

Mi-Young Kim, Ph.D.

kimm@ornl.gov

Emissions and Catalysis Research Group Fuels, Engines and Emissions Research Center Oak Ridge National Laboratory 2360 Cherahala Blvd. Knoxville, TN 37932 Office: (865) 946-1430 Fax: (865) 946-1354

CAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-RATTELLE FOR THE DEPARTMENT OF ENERGY

