

10th CLEERS Workshop

1 May 2007

4-way Catalyst Modeling in Wall-Flow and Deep-bed Substrates

Grigorios Koltsakis Aristotle University Thessaloniki

- Prof. Zissis Samaras, LAT/AUTh
- > N. Margaritis, LAT/AUTh
- C. Dardiotis, LAT/AUTh
- D. Katsaounis, LAT/AUTh
- > Dr O. Haralampous, Exothermia SA
- > Dr D. Tsinoglou, Exothermia SA
- G. Markomanolakis, Exothermia SA
- ➢ P. Marcou, Exothermia SA

Introduction 4-way catalysis

- The term "3-way" catalysis first introduced for closed-loop control stoichiometric engines (CO, HC, NO_x)
- Until recently, "2-way" catalysis was adequate for lean burn engines (CO, HC)
- > Nowadays and in the near future
 - Most diesel engines will be equipped with "4-way" systems
 - Lean burn gasoline engines currently employing "3-way" catalysis. PM aftertreatment may also arise.
- > "4-way" catalysis may involve
 - Multiple reactors (e.g. DOC+DPF+SCR/LNT)
 - Single reactor (e.g. DPNR)

Reactor concepts – application areas

Content of presentation

Integrated exhaust line simulation

ABORATORY OF APPLIED THERMODYNAMICS ARISTOTLE UNIVERSITY THESSALONIKI

Flow-through catalyst Model equations

Basic 1-D model equations

LAT,

2-D axi-symmetric modeling **Basic concept**

ABORATORY OF APPLIED THERMODYNAMICS ARISTOTLE UNIVERSITY THESSALONIKI

DOC modeling

Basic oxidation reactions on Precious Metals NO-NO₂ chemical equilibrium

NO/NO₂ thermodynamics are taken into account by the terms Eq_i

$$Eq_{i} = 1 - K_{p}(T) \cdot \frac{\prod c_{s,prod}^{n}}{\prod c_{s,react}^{m}}$$

Chemical equilibrium constant (function of temperature)

Negative value of a parameter Eq_i suggests that the reaction is not thermodynamic possible and the reaction rate in the model is zeroed.

 \succ Competitive HC, H₂O, NH₃ adsorption on zeolite

- *H*₂O <--> (*H*₂O)ads
- $C_x H_y < --> (C_x H_y) ads$ (toluene)
- $C_x H_y < --> (C_x H_y) ads$ (decane)
- NH₃ <--> (NH₃)ads

Adsorption model Dubinin-Radushkevich isotherm

The equation of the DR isotherm gives the adsorbed mass as function of temperature and partial pressure.

$$\ln x_{eq} = \ln(W_0 \rho) - D \left[\ln \left(\frac{p_0}{p} \right) \right]^2 \qquad D = A \left(\frac{RT}{\beta} \right)^2$$

A linear «driving force» is assumed to calculate the rates towards equilibrium.

$$R = \frac{\partial x}{\partial t} = k \cdot \left(x_{eq} - x \right)$$

- > Adjustable parameters:
 - W₀ (micropore volume)
 - A (micropore size distribution)
 - β (affinity parameter)
 - k (Arrhenius-type parameter)

CO prediction in transient driving cycle instantaneous emissions

LAI

HC prediction in transient driving cycle instantaneous emissions

2-d simulation example Catalyst warm-up behavior

0 %

2-d simulation example Catalyst warm-up behavior

2-d simulation example Catalyst warm-up behavior

ABORATORY OF APPLIED THERMODYNAMICS ARISTOTLE UNIVERSITY THESSALONIKI

LNT modeling

NO_x Storage reactions

modeling efficiency

LNT Regeneration reactions

Regeneration with H₂

$$Ba(NO_{3})_{2} + 3H_{2} \rightarrow BaO + 2NO + 3H_{2}O \qquad R_{10} = A_{10} \cdot e^{-E_{10}/RT} \cdot c_{H_{2}} \cdot \Psi_{cap} \cdot \Psi_{Ba(NO_{3})_{2}}$$
$$Ba(NO_{2})_{2} + H_{2} \rightarrow BaO + 2NO + H_{2}O \qquad R_{13} = A_{13} \cdot e^{-E_{13}/RT} \cdot c_{H_{2}} \cdot \Psi_{cap} \cdot \Psi_{Ba(NO_{2})_{2}}$$

Reduction of released NO – NH₃ production/oxidation

$$CO + NO \rightarrow CO_2 + \frac{1}{2}N_2$$
$$H_2 + NO \rightarrow H_2O + \frac{1}{2}N_2$$

 $NO + 2.5H_2 \rightarrow NH_3 + H_2O$

$$R_{11} = \frac{A_{11} \cdot e^{-E_{11}/RT} \cdot c_{CO} \cdot c_{NO}}{G_6}$$
$$R_{14} = \frac{A_{14} \cdot e^{-E_{14}/RT} \cdot c_{H2} \cdot c_{NO}}{G_6}$$

 $NH_3 + 1.25O_2 \rightarrow NO + 1.5H_2O$

Exothermia modeling efficiency

$$\begin{split} SO_2 + \frac{1}{2}O_2 \to SO_3 & R = (A \cdot e^{-E_{RT}} \cdot c_{SO_2} \cdot c_{O_2} \cdot Eq)/G_1 \\ SO_3 \to SO_2 + \frac{1}{2}O_2 & R = (A \cdot e^{-E_{RT}} \cdot c_{SO_3} \cdot Eq)/G_1 \\ BaO + SO_3 \to BaSO_4 & R = A \cdot e^{-E_{RT}} \cdot c_{SO_3} \cdot \Psi_{cap} \cdot \Psi_{BaO} \cdot Eq \\ BaSO_4 \to BaO + SO_3 & R = A \cdot e^{-E_{RT}} \cdot \Psi_{cap} \cdot \Psi_{BaSO_4} \cdot Eq \\ BaSO_4 + CO \to BaO + SO_2 + CO_2 & R = A \cdot e^{-E_{RT}} \cdot c_{CO} \cdot \Psi_{cap} \cdot \Psi_{BaSO_4} \cdot Eq \\ BaSO_4 + H_2 \to BaO + SO_2 + H_2O & R = A \cdot e^{-E_{RT}} \cdot c_{H_2} \cdot \Psi_{cap} \cdot \Psi_{BaSO_4} \cdot Eq \\ BaSO_4 + 4H_2 \to BaO + H_2S + 3H_2O & R = A \cdot e^{-E_{RT}} \cdot c_{H_2} \cdot \Psi_{cap} \cdot \Psi_{BaSO_4} \cdot Eq \\ H_2S + \frac{3}{2}O_2 \to SO_2 + H_2O & R = (A \cdot e^{-E_{RT}} \cdot c_{H_2S} \cdot c_{O_2})/G_1 \\ \hline \end{array}$$

$$O_2 \text{``storage''}$$

$$Ce_2O_3 + \frac{1}{2}O_2 \rightarrow 2CeO_2$$

$$Ce_2O_3 + NO \rightarrow 2CeO_2 + \frac{1}{2}N_2$$

$$O_2$$
 "release"
 $CO + 2CeO_2 \rightarrow Ce_2O_3 + CO_2$
 $H_2 + 2CeO_2 \rightarrow Ce_2O_3 + H_2O$

Ce oxidation state
$$\psi = \frac{2 \times \text{moles CeO}_2}{2 \times \text{moles CeO}_2 + \text{moles Ce}_2 O_3}$$

 $\frac{d\psi}{dt} = -\frac{1}{\Psi_{cap}} \left(R_{ox} - R_{red} \right)$

Oxygen storage/release phenomena strongly affect reductants availability and NO release during regeneration

LNT model parameter calibration Tube reactor placed in an electrically heated tube furnace

"Spontaneous" (thermal) NO_x release during temperature increase in lean operation

Inlet: NO:67 ppm, NO₂:73 ppm, NOx:140 ppm, GHSV:88000 [h⁻¹]

modeling efficiency

Storage experiment at 400°C with diesel exhaust

Inlet: NO:90 ppm, NO₂:75 ppm, NOx:165 ppm

Stored NO_x at different temperatures

NO emissions during regeneration at 200°C

Time [s]

NO emissions during regeneration at 200°C

Exothermia modeling efficiency

ARISTOTLE UNIVERSITY THESSALONIKI

Sulfur effects

Sulfation model validation at two different space velocities

Marks: measurement, Lines: computed

ABORATORY OF APPLIED THERMODYNAMICS ARISTOTLE UNIVERSITY THESSALONIKI

SCR catalyst modeling

Reaction scheme:

SCR reactions

$$4 NH_3 + 4 NO + O_2 \rightarrow 4 N_2 + 6 H_2O$$
$$2 NH_3 + NO + NO_2 \rightarrow 2 N_2 + 3 H_2O$$
$$4 NH_3 + 3 NO_2 \rightarrow 3.5 N_2 + 6 H_2O$$

Alternatively, "direct NH₃ + NO₂" reaction is split in 2 reactions:

$$2 NH_3 + 2 NO_2 \rightarrow N_2O + N_2 + 3 H_2O$$
$$2NH_3 + 3N_2O \rightarrow 4 N_2 + 3 H_2O$$

NH₃ oxidation reaction

$$NH_3 + 5/4 O_2 \rightarrow NO + 3/2 H_2O$$

SCR Parameter calibration example

Lines: Experimental, symbols: simulation.

Experimental Data Source: Winkler et al., Modeling of SCR DeNOx Catalyst – Looking at the Impact of Substrate Attributes, SAE Paper 2003-01-0845 Exothermia modeling efficiency

Experimental validation SCR simulation in transient cycle

Water adsorption neglected!

Experimental validation SCR simulation in transient cycle

Water adsorption included!

Experiments conducted at an engine test bench of IAV GmbH

Experimental validation SCR simulation in transient cycle

LABORATORY OF APPLIED THERMODYNAMICS ARISTOTLE UNIVERSITY THESSALONIKI

Wall-flow reactor modeling

Wall-flow Reactor Modeling Modeling levels

Channel scale

- Heat convection
- Wall velocity profile
- Mass convection

x

Equations

- Gas energy balance
- Mass balance
- Momentum balance
- Species balance

Wall scale

- Intra-layer reaction
- Intra-layer diffusion
- Intra-layer velocity and density variation

Channel scale (1-d modeling) Equations

Ref: Koltsakis, Stamatelos, Ind. Eng. Chem. Res. 1997

Transport-reaction "coupling"

2-d Transient Heat Transfer

$$\rho_{s} \cdot C_{p,s} \frac{\partial T_{s}}{\partial t} = \lambda_{s,z} \frac{\partial^{2} T_{s}}{\partial z^{2}} + \lambda_{s,r} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T_{s}}{\partial r} \right) + S$$

$$S = H_{conv} + H_{wall} + H_{react} + H_{rad}$$

$$\rho_s \cdot C_{p,s} \frac{\partial T_s}{\partial t} = \lambda_{s,z} \frac{\partial^2 T_s}{\partial x^2} + \lambda_{s,r} \frac{\partial^2 T_s}{\partial y^2} + \lambda_{s,r} \frac{\partial^2 T_s}{\partial z^2} + S$$

$$S = H_{conv} + H_{wall} + H_{react} + H_{rad}$$

ABORATORY OF APPLIED THERMODYNAMICS ARISTOTLE UNIVERSITY THESSALONIKI

Wall-flow DOC

Soot layer

$$C + \alpha_1 O_2 \rightarrow 2 \left(\alpha_1 - \frac{1}{2} \right) CO_2 + 2 \left(1 - \alpha_1 \right) CO$$

Carbon oxidation

 $C + \alpha_2 NO_2 \rightarrow \alpha_2 NO + (2 - \alpha_2)CO + (\alpha_2 - 1)CO_2$

Catalyzed wall: basic reactions for Noble Metals coatings

Bi-directional NO oxidation

$$NO + \frac{1}{2}O_2 \leftrightarrow NO_2$$

CO oxidation

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

HC oxidation

Exothermia modeling efficiency

$$C_{x}H_{y} + \alpha O_{2} \longrightarrow \beta CO_{2} + \gamma H_{2}O$$

CO profiles in DOC and CDPF during warm-up

"Active length" (T>150°C): DOC: 25 mm, CDPF: 35 mm

Due to the lower axial gas velocities in the DOC the conversion is higher despite the shorter "active length"

Exothermia modeling efficiency CO profiles t = 15 s

Effect of intra-wall catalyst distribution CDPF regeneration rate

Exothermia modeling efficiency

ARISTOTLE UNIVERSITY THESSALONIKI

Wall-flow LNT (DPNR)

DPNR simulation example Lean-rich cycle at 350°C

Intra-layer NO₂ profiles t=60 s

Intra-layer NO₂ profiles t=75 s

Intra-layer NO₂ profiles t=90 s

Intra-layer NO₂ profiles t=105 s

Intra-layer NO₂ profiles t=114 s

DPNR simulation example Saturation profiles at the end of storage phase

LABORATORY OF APPLIED THERMODYNAMICS ARISTOTLE UNIVERSITY THESSALONIKI

Catalytic DPF regeneration

Regeneration simulation example Filter temperature calculation

Regeneration simulation example Soot distribution calculation

LABORATORY OF APPLIED THERMODYNAMICS ARISTOTLE UNIVERSITY THESSALONIKI

De-NO_x Modeling on Foam Substrates

Foam morphology characterization (example with INCOFOAM®HighTemp)

Definitions

1-d modeling: Transport/Reaction Axial flow concept

Heat/mass transfer coefficients

Heat transfer coefficient

Mass transfer coefficient

 η_{gas} Dynamic gas viscosity

Foam model calibration

Exothermia modeling efficiency

Temperature response modeling study Foam 1200 microns vs Cordierite 400 cpsi

CO, HC conversion efficiency vs time Length: 4 cm

<u>LAT</u>

2-d modeling "Radial flow", "Cross flow" designs

2-d modeling for "radial-flow" or "cross-flow" designs

- Solution of
 - Mass balance
 - Momentum balance
 - Energy balance
 - Species balance
- The filtration equations are also applied in each node
- The equations are solved in the gas channels and the foam phase

Transient 2-d simulation of foam catalyst warm-up Time = 5 s

LABORATORY OF APPLIED THERMODYNAMICS ARISTOTLE UNIVERSITY THESSALONIKI

Integrated exhaust line simulation

System simulation in MATLAB/SIMULINK environment

modeling efficiency

Reactors in series Effect of NH₃ pre-adsorption

Reactors in series Effect of DOC geometry

Reactors in series Effect of DPF size, material

Exothermia modeling efficiency

Effect of pipe insulation

Exothermia modeling efficiency

Comparison of various positioning strategies, including "wall-flow" SCR

Controlled regeneration

Uncontrolled regeneration

Effect of passive regeneration Soot accumulation rate in successive European Driving Cycles

Summary Flow-through reactors

- DOC modeling
 - HC adsorption
 - Radial effects
- LNT modeling
 - T dependence of effective NOx storage capacity
 - Effect of OSC during regeneration
 - Sulfation/desulfation
- SCR modeling
 - NO/NO₂ ratio
 - NH₃ adsorption/desorption

Summary 4-way reactors

CDPF modeling

- Transport-reaction modeling
- Catalyst zoning (axially/intra-wall)
- 3-d regeneration modeling
- > Wall-flow de-NO_x modeling (NSC, SCR)
 - Axial, intra-wall variations
- Foam de-NO_x modeling
 - Filtration/Flow/Heat transfer interactions
- System simulation
 - Emission cycle predictions
 - Passive/active regeneration predictions

