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Motivation

Emission Control Components

DOC:Diesel Oxidation Catalyst
DPF: Diesel Particulate Filter
DeNOx: NOx Trap or SCR Converter
(SCR: Selective Catalytic Reduction)
ECU: Engine Control Unit

& Substrate G’t&q«} <

Wy T 5
@ Catalyst
(] Eatal\:/stz [ {3‘? %‘{30

@ Catalyst3 @Q'é? &C}' f:?\ N p

ey T TRe Y

Multifunctional
Porous Wall

ecu | Multifunctional Reactors/Separators
\
:  Databus T,P, AP,Soot, NOx sensor inputs
ENGINE f *
SENSOR A/D INTERFACE
DOC DPF DeNOx |:>
| taijpipe
HC injection Reductant
injecti
Konstandopoulos, et al. 2001
Exhaust ——— —— Integration into “Single Brick”
Flow j B

) B

T~

Single Channel

DPF as a Multifunctional
Reactor/Separator




Recoverable Energy from Regeneration

std DPF (SiC, 5.66 in x 6 in, 300 cpsi)
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Multi-Functional Filter-Reactor (MFR)

(The initial development of the MFR has been described in SAE 2009-01-0287)

The MFR is a “single brick” solution which
incorporates the following functionalities:

e Heat management with internal heat recovery
e Direct and indirect soot oxidation
e Gas species (CO, hydrocarbons) oxidation

e Very high filtration efficiency from clean
condition
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Multi-Functional Reactor (MFR)

Objective: Develop and assess the performance of the
MFR under conventional and alternative combustion
conditions.
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Thermal Behavior During Regeneration

Faster heat-up
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MFR Pressure Drop and Soot Oxidation

SAE 2009-01-0287
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Favorable pressure drop behavior and higher soot oxidation activity from the (fresh) MFR.
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The aged MFR

Aging procedure (equivalent to regenerations for 100,000 km of normal vehicle
driving)
A: Loading (2000 rpm, BMEP: 5 bar, T.,,,=310 °C) > 2 hr

exh™

B: Oxidation (1500 rpm, BMEP: 9 bar, T..,,=500 °C) > 1 hr

exh™

C: Continuous Regeneration (3000 rpm, BMEP: 10 bar, 600 °C) - 10 hr

Procedure repeated 5 times
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Pressure drop for fresh and aged MFR

Steady state engine operation conditions 1500 RPM, 3 bar, 250 °C
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Increase in clean and loaded pressure drop attributed mainly to some ash accumulation.



Soot oxidation for fresh and aged MFR

Constant temperature and step temperature regeneration protocols as described in past
SAE Papers 2005-01-0670, 2004-01-0694

0.0045
0.0040 -
—&®— Fresh - step regeneration

0.0035 -
. ¢ Fresh - const. temp.
@9 0.0030 - - ® Aged - step regeneneration ®
g 0.0025 - ¢ Aged - const. temp. ,'
£ 0.0020 |
= ]
S 0.0015

0.0010 -

0.0005 -

0.0000

250 350 450 550 650

Temperature (C)

Aging did not affect the soot oxidation performance.



MFR performance — alternative combustion

HCCI conditions :

Narow Angle Direct Injection
(NADI™) concept employed on a
conventional 4 cylinder, 2.2 L, Euro
4, Diesel engine

enarrow injector cone angle
ePrototype EGR

eReduced compression ratio




Analysis of soot particles

Analysis techniques:
e Elemental analysis (C, H)
e Transition Electron Microscopy (TEM)

e Thermo-Gravimetric Analysis (TGA)
(under linear temperature ramp)

e Ex-situ yRaman Spectroscopy at ambient temperature

Samples:
e Carbon Black (CB)
e Soot from conventional combustion

e Soot from HCCI combustion



Elemental analysis

Sample H/C (% w/w)
CB 0.0040
Conventional 0.0060
HCCI 0.0166

Higher hydrogen content in HCCI soot.



TEM Images

Minor differences in aggregate
(A - geometry but a core-shell
carbon L @ structure observed at primary
black i g particle level for HCCI soot.

conventional
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TEM analysis of partially oxidized samples
(60 206 burn off)

conventional

Core-shell structure seems to disappear after partial oxidation.
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Thermogravimetric analysis of soot samples
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Raman Spectroscopy
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Pressure Drop

Same inlet filter temperature (230 °C) and exhaust mass flow rate (65 kg/hr) for HCCI
and Conventional conditions
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Soot oxidation
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MFR effect on HC and CO emissions from HCCI mode
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Need to improve the low temperature/HCCI gas oxidation activity

Note the quite high HC and CO emission levels at some HCCI test conditions,
where some inhibition are expected to be present.



Fuel penalty simulation

Simulations based on NEDC and off-cycle FEV’s driving pattern data from the High Efficiency
Combustion System (HECS) engine.

Engine characteristics:

= Downsized 1.6 litre 4-cyl. Diesel engine

= 80 kW/litre spec. power Benefits:

" 2-stage boosting system = Fuel consumption reduction (~17 %)

" High and Low Pressure EGR " EU6 emissions w/o NOx aftertreatment

" Advanced Cooling Concept = High specific torque and power

= 2000 bar Piezo injector
= Optimized Bowl with CR 15:1

= Variable Swirl Concept

= Robust combustion system

= Advanced Control Strategies




Layout of Simulation
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Investigation of target regeneration temperature

under NEDC conditions
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It was decided to use distinct regeneration strategies best suited to each system rather than a common one.



Regeneration strategy

Target soot load Target exhaust

Target soot load to to stop gas
start regeneration regeneration temperature
SA DPF 7 g/m?2 0.5 g/m2 630°C

MFR 5 g/m2 0.5 g/m2 550°C




Temperatures during slow city cycle regeneration
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Temperatures during interurban cycle regeneration
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Temperature profiles during regeneration under the

highway cycle
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Evolution of soot mass during regeneration
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MFR consistently achieved much shorter regeneration interval on all driving cycles/patterns considered.



Fuel penalty due to filter regeneration for different

driving cycles
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Conclusions (1)

= A Diesel exhaust emission control device termed Multi-Functional Reactor
(MFR) was realized combining filtration, internal heat recovery, soot
and gas oxidation functions.

" Aging of the MFR did not result in losses in its catalytic activity and filtration
efficiency. An increase in the filter pressure drop by nearly 20% mainly due to
ash particles accumulation.

" The MFR has equivalent performance under both conventional and HCCI
engine operation conditions with respect to filter pressure drop and
regeneration performance.



Conclusions (2)

= Simulation results indicated significant economy on the fuel consumption
related to benchmark DPF operation (47% in the NEDC).

" HCCI soot exhibited:
* increased H, content and is oxidized more easily in TGA conditions,
e differences in primary particle morphology (core/shell particles),

e no significant differences in the degree of structural organization, as
revealed by Raman spectra analysis,

¢ equivalent soot cake microstructural properties evolved at either
conventional or alternative combustion conditions.

" The catalyst soot oxidation activity was not affected by the applied combustion
type and the possible differences recognized by TEM and TGA analysis did not
seem to result in any performance differences at the catalyzed monolith scale.
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Thank you for your attention!
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