

CLEERS, April 2011

# **System Simulation of Modern Powertrain Concepts**

#### - From an Industrial Perspective

B. Krutzsch, M. Weibel, R. Steiner, V. Schmeißer

Daimler AG, Germany





#### Outline

#### Introduction

- Emission Standards – Motivation - Challenges

#### Modeling Challenges

- Exhaust Gas Aftertreatment Simulation
  - BlueTEC Technology for Passenger Cars
- Engine emission modeling
- Full Vehicle Simulation
- Summary Conclusion



# Motivation: NOx- and PM-Emissions

The major challenge is to fulfill the worldwide emission standards



# **DAIMLER** Political Surroundings





It is expected that fuel consumption and emission targets will tighten even further in the future!



# **Challenges Related To Emission Legislation**



To meet future standards, fuels with closely restricted specifications and extensive improvements in combustion and exhaust gas after treatment systems are obligatory



# Innovative powertrain systems towards sustainable mobility for the future





#### Outline

#### Introduction

- Emission Standards – Motivation - Challenges

#### Modeling Challenges

- Exhaust Gas Aftertreatment Simulation
  - BlueTEC Technology for Passenger Cars
- Engine emission modeling
- Full Vehicle Simulation
- Summary Conclusion



#### **Motivation**

AGN-Simulation as sub-component of systemsimulation for the development of lowemission vehicles with combustion engines including alternative propulsion (e-Drive)



→ high complexity of aftert-treatment and propulsion systems and fundamental role of simulation
 → Without simulation it`s impossible to adapt a system to all the different vehicle and engine variants offered on the markets around the world



**Introduction Modeling EGA** 



# Exhaust Aftertreatment Component Toolbox (ExACT)

# History

- <u>1996</u>: Technology-Monitoring: Tools EGA-Sim commercially not available
- 1997: Start FVV-Project, Lead Daimler (PhD: Daniel Chatterjee)
- <u>2000</u>: Start Modeling in R&D Projects: TWC, DOC, NO-Oxidation Cooperation with Universities Prague, Milano, Thessaloniki (Models or SCR, TWC, NSC, DOC, DPF)

#### $\rightarrow$ Tool *ExACT*





**ExACT toolbox** consists of 1D models for SCR, DOC, DPF, LNT, TWC and ASC. Simulation of combined aftertreatment systems. Model generation by drag & drop. **Focus:** Testcycle simulation, system design, operating strategies, DCU development



Modeling of most relevant physical and chemical processes required for predictive simulations. Variation of geom. parameters (cell density etc.) in the simulation makes separation of transport effects and chemistry kinetics necessary.



• Real axiale distribution

• Temperature distribution



### DAIMLER EGA 1D M



# Modeling of NSC and SCR: NOx Conversion and NH3 Yield (Simulation versus Experiment)



NSC: NH<sub>3</sub> selectivity during regeneration favoured around 350 °C. SCR: Conversion efficiency is influenced by the NO<sub>2</sub>/NO<sub>x</sub> feed ratio. Model correlates well with measured product selectivity and NO<sub>x</sub> conversion.



### Reaction Mechanism: How important is the detailed chemistry?



# Eley-Rideal unable to explain the inhibition of N2-formation by NH3.

CLEERS Workshop 2011 \_ EGA- and System Simulation - Daimler AG / 2011 04 20

2. Modified Redox kinetics (MR)



With a modified mechanism MR excellent compliance between Sim and Experiment

15



# Kinetic Parameter Calibration Dr. V. Schmeißer, Dr. B. Ganz

#### **Kinetic Parameter Calibration**



# Model calibration

#### global kinetics

• change of washcoat or ageing condition requires calibration

• only kinetic parameters calibration – geometry not affected reactions and rates - example:

$$CO + \frac{1}{2}O_{2} \longrightarrow CO_{2}$$

$$R_{NSRC1} = k_{NSRC1}y_{CO}y_{O_{2}}\frac{1}{G_{1b}}$$

$$K_{inh,l} = K_{infl}O_{l} \cdot \exp\left(\frac{E_{l}}{T^{s}}\right)$$

$$K_{inh,l} = K_{inh,l} \cdot \exp\left(\frac{E_{l}}{T^{s}}\right)$$

• numerous

• to be determined according to measurements



- new catalysts/PGM-loadings/aging require kinetic calibration
- effective techniques necessary:
  - using conventional parameter estimation tools (e.g. simplex)
  - using automated calibration





#### Advanced calibration methods

#### Demand:

#### availability of kinetic parameters for new technologies/conditions within a short time!



# New Calibration Methodology could be used for all tested cases fast calibration process due to parallelization on computer cluster **D**

\* Souther & Workedienten basierth, NSGAM (Noon-sorting agenetic algorithm) BFGS (Broyden-Fletcher-Goldfarb-Shanno)



1D EGA simulation: Heavy Duty EGA-System Dr. F. Hofmann, Dr. J. Koop

#### **EGA 1D Model Application**



example:

ATS-Box

Euro6 Swenox

### Heavy Duty EGA-System

#### **Motivation**

- high complexity of EAT systems and increased requirements
- support by simulation required

#### **Technical and Functional Approach**

- > EAT model development using Matlab/Simulink (ExACT) and StarCD
- ➢ pipes, DOC, (c)DPF, SCR, ASC, TWC, NSC, AdBlue<sup>®</sup> dosing and processing

#### Current Status

- status of in-house developed models: high quality
- model application in various projects (Euro6, Tier4, Helo)
- further development according to future technologies (e.g. hybrids)



exhaust gas

from enaine

particulate filte

AdBlue

njection

SCF

ASC

#### EAT modeling and simulation for:

- > development of operation strategies
- > prediction of conversion behaviour

#### CLEERS Workshop 2011 \_ EGA- and System Simulation - Daimler AG / 2011 04 20

NO2-ratio[%]

#### temperatures[ °C]

efficiency around 10-20% by improving the NH<sub>3</sub>-uniformity.

#### NOx-conversion-deviation-map (sim \*-exp.) [%]

Analyis of Urea Processing on SCR-Performance



OM460 with ATS-Katbox EURO6 (17L DOC; 27L cDPF; 39,7L SCR), mexh 300 kg/h

Simulation reveals a potential of improvement of the low temperature SCR



NO2-ratio[%] \* 1D ExACT Simulation



NOx-conversion map experiment [%]

# DAIMLER

Heavy Duty EGA-System:





1D EGA simulation: NSC + SCR-combination (BlueTEC I) Dr. Weibel et. al.

#### **EGA 1D Model Application**



#### Exhaust gas after treatment with Bluetec I / Bluetec II



Target: Diesel engines as clean as gasoline engines thanks to BLUETEC - on the way to the most stringent emission standards EU5 and EU6

#### **EGA 1D Model Application**



# ExACT-simulation: NSC + SCR-combination

BlueTEC I: on-board generation of NH<sub>3</sub>



BlueTEC 1 as complex aftertreatment system with influence and interaction between catalyst modules including a lean / rich strategy by the engine

#### **1D EGA Simulation**



## ExACT-simulation: NSC + SCR-combination

lean/rich-cycles (steady state), SV = 35.000 1/h, lean: 180s, rich: 7s



#### **EGA 1D Model Application**



# BlueTec I (NSC Technology) Detailed analysis of the cycle



•NOx absorption starts after 150 sec

•Practically all NOx emitted between 150 sec and 800 are completely absorbed

•conversion in SCR after 800 sec due to low temperatures

- $\Rightarrow$  NOx conversion in NSC 62%
- NOx conversion in SCR 8%
- BlueTec I has the potential to meet Euro 6 targets



# Coupling engine emission data with 1D EGA simulation

T. Rappe



# EGA-Simulation DI-Gasoline: Study of





### Numerical NEDC-Simulation of axial NO<sub> $\chi$ </sub> and NH<sub>3</sub> profile with **3s** rich spikes



With 3s rich time NSC NO<sub>X</sub> regeneration insufficient however for overall NO<sub>X</sub> performance sufficient NH3 in SCR catalyst.

#### **Results: Coupling engine data with EXACT** DAIMLER Numerical simulation of lean gasoline vehicle to achieve EU6 regulations. SCR **SCR** TWC TWC **NSC** 00 Urea 3000 3000 Lambda [-] -NOx upstream 0.8 0.8 -NOx downstream TWC 2500 2500 NOx downstream SCR -NOx\_upstream -NOx downstream NSC -TWC 0.6 0.6 -NOx downstream SCR 0.0 [Lux]/b] -SCR 2000 -NSC 2000 0.4 [may/6] ×ON EU6 N SCR [wad] 1500 XON [udd] 1500 XON Lambda 0.2 Ŏ EU6 0 0 1000 1000 500 500



Simulation is useful to compare different EGA-systems and operation strategies. Pre-optimizations of operation strategies can simplify test bench application.



#### Summary

- *ExACT*: in-house developed and well-established1D-simulation tool for EGA components
- description of complex exhaust aftertreatment systems possible
- simulation tasks for:
  - improved system configuration
  - improved component design and layout (catalyst size, position)
  - sensitivity analysis
  - potential estimation

## Conclusion

**Modeling** and **simulation** will be the **key factor** for different applications of engine-vehicle combinations on markets around the world.



# *ExACT* "virtual testbench": DCU-methodology for TP/PME

Dr. F. Hofmann



### **DCU-Methodology**

Model based DCU\*-development for EURO6 and DCU-calibration with ExACT \*DCU: Dosing Control Unit



• ExACT "virtual testbench": combined DCU and EGA simulation
 • DCU control algorithm testing & precalibration of a-maps
 → precalibration saves approx. 1-2 months in development time



\*DCU: Dosing Control Unit

# **DCU-Methodology**

Further Development of Urea-Dosing Strategy for Cu-SCR based on ExACT

#### Motivation:

SCR NO<sub>x</sub> conversion depends on <u>NH<sub>3</sub> storage</u> ( $\theta_{NH3}$ ) (*Cu-SCR* !) **approach**:

- 1.) control of  $NH_3$  loading
- 2.) accelerated  $NH_3$  loading by overdosing at cold-start
- → development of loading control and testing: with ExACT

#### Simulation Results:

- θ<sub>NH3</sub> control
   → increased NO<sub>x</sub>-conversion
- for both: Fe- or Cu-SCR
- generation of NH<sub>3</sub> storage map based on ExACT

#### Next Step:





#### 

• Validation on engine test bench

higher NO<sub>x</sub>-conversion due to improved dosing control

 $\rightarrow$  enables higher NO<sub>x</sub> raw emissions & reduced fuel consumption:

[U NOx] max NH3 slip min

34





3D-CFD-Modeling & 1D-3D coupling

Dr. Schöffel, H. Echtle







# 3D Simulation AdBlue Processing Example: mixer optimization



• reduced mixer length  $\rightarrow$  investigating reason for less uniform distribution (350°C, 200kg/s)

• reason: wall film formation due to decreased overlap of blades  $\rightarrow$  poor evaporation

→ 3D-Simulation applied for diagnostics and optimization

#### 1D-3D coupling



Cooperation with CD-adapco Monolith with fine representative channel subdivision

#### Example: water condensation on DOC





#### M. Weaver, CD-adapco, CLEERS-Workshop 2010

- integration of DOC 1D-reactions validated  $\rightarrow$  model compatibility 1D 3D
- pilot application for test bench simulation in progress
- next steps: integration DPF and SCR reactions



# Control-oriented SCR-Model (COM) Methodology (HiL, SiL, ..)

Dr. Frank Hofmann





## Example: Comparison COM vs. ExACT in NEDC with Cu-SCR-catalyst





### Summary

- For the **overall system simulation** of future powertrain concepts there is no alternative to EGA-simulation (conventionel & e-Drive)
- **ExACT** is physical/chemical based and effective for **predictive simulation**
- **ExACT** + 3D-Simulation urea process in exhaust is used intensively for application work in the **product development**
- The use for **model-based control** and ECU capable models is of increasing importance
- And will be **further developed** together with our academic and industrial partners

 $|\triangleright$ 



#### Outline

#### Introduction

- Emission Standards – Motivation - Challenges

#### Modeling Challenges

- Exhaust Gas Aftertreatment Simulation
  - BlueTEC Technology for Passenger Cars
- "Virtual Powertrain" Engine emission modeling
- Full Vehicle Simulation
- Summary Conclusion

| DAI | MLER |
|-----|------|
|-----|------|



# Virtual Powertrain – engine emission modeling

### Dr. R. Steiner et. al. in cooperation with ETH Zürich



# Engine Emission Modeling General Modeling Requirements:

# Overall system simulation (and sub-models!) needs to be

**fast** for offline predictions: results for driving cycles are in focus!

real-time for HiL applications (for total system: time steps <10 ms, <100 HZ)</p>

> very fast when using an engine air-path model: time steps <1ms, <1000HZ)

Compromise between computational efficiency and accuracy: As accurate as needed, as simple and fast as possible!!!

Accounting for most relevant physics-based process variables!

Most challenging part in sub-model development, prediction of → transient behaviour of heat release and raw emission formation

<sup>\*1</sup> :Depending on computer platform







#### **Control-oriented Modeling: State-of-the-art** Mean value model for control-oriented applications (ODEs) Gas path: $\rightarrow$ good compromise between computational efficiency and accuracy Combustion: Quasi-static modeling approach $\rightarrow$ based on static engine maps **Raw Emissions** 3D CFD models (Kiva...) Usually crank-angle based. CPU costs too high! Phenomenological models (Hiroyasu. Empirical Models (Barba...) Large-number of measurements needed; reduced portability; very poor extrapolation capability! 400 800 QSS Engine torque [Nm] Measurement 300 PM [FSN] NO [ppm] 200 400 100 0 0 0 0 0 2 6 8 2 6 0 8 Time [s] Time [s] Time [s] Comparison between measurement data (black) and quasi-stationary simulations (red) during a load step at constant engine speed.

Quasi-stationary modeling approach is adequate for computing torque generation (and fuel consumption) but inappropriate for predicting emissions!

# **DAIMLER** Control-Oriented Models: Analysis



# **Transient** boundary conditions of combustion process

#### Differences to static engine operation



The **turbocharger inertia** causes the most relevant dynamic effects for a modern Diesel!

The relevant boundary conditions for combustion and emission formation are:

> cylinder charge at IVC (mass, gas composition, and gas temperature)

boost pressure, exhaust gas recirculation rate and the temperature after intercooler

- injection (mass, pressure, timing)
- operating point (injected fuel, engine speed)



## **DAIMLER** Transient control-oriented engine models





With the approach "Transient control-oriented engine models" Well Prediction of heat release and raw emissions

# **DAIMLER** Transient control-oriented engine models



# Comparison between measurement and simulation Soot:



Influence of transient transitions on soot-emissions are predicted well!

UDC= urban-driving-cycle EUDC=Extra-urban-driving-cycle

# DAIMLER Transient Simulation Results: NEDC



# Comparison between measurement and simulation NOx:



Influence of transient transitions on NOx-emissions are predicted well!

UDC= urban-driving-cycle EUDC=Extra-urban-driving-cycle



#### Outline

#### Introduction

- Emission Standards – Motivation - Challenges

#### Modeling Challenges

- Exhaust Gas Aftertreatment Simulation
  - BlueTEC Technology for Passenger Cars
- "Virtual Powertrain" Engine emission modeling
- Full Vehicle Simulation
- Summary Conclusion

# DAIMLERFull Vehicle Simulation @ Daimler



# Example: Support within the Blue-Zero Project





Reduction of development time by strong link between soft- and hardware (Plug 'n Play)

#### Validation





Ready to use for "offline" optimization (Model-, ECU-, Powertrain-in-the Loop)!

CLEERS Workshop 2011 \_ EGA- and System Simulation - Daimler AG / 2011 04 20

Source: P. Macri-Lassus

#### Validation





Validation based on arbitrary driving cycle shows good results! Ready to use for "offline" optimization (Model-, ECU-, Powertrain-in-the Loop)!

Source: P. Macri-Lassus



# Summary

The mobility of the future is dependent on a lot of boundary conditions that become more and more stringent! CO2 and emissions are in focus!

Future mobility is also shaped by the electrification of the powertrain! Portfolio of powertrain concepts and its complexity is dramatically increasing! Increase of levers for optimization. Operation strategies make the difference! Overall system optimization is the key to success!

Without advanced simulation tools it will be impossible to meet these challenges. This includes sub-system and overall system models.

#### "Best components with best operation strategies!"

# Acknowledgments



Politecnico di Milano Dipartimenti di Energia

Prof. E. Tronconi and his group



Prof. Marek and his group



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Prof. Lino Guzzella and his group

# DAIMLER

Dr. B. Ganz, P. Macri-Lassus, Dr. F. Hofmann, T. Rappe, H. Echtle, Dr. J. Koop, Dr. S. Schöffel, G. Wenninger, Dr. C. Krüger



# Thank you for your attention !