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Overall objective

Develop an elementary surface reaction mechanism, 
complete with values for the kinetic parameters, that 
accounts for the observed product distribution from a 
lean NOx trap during both steady state and cyclical 
operation and under various conditions of temperature 
and inlet gas composition.
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Basic approach

• Assemble tentative mechanisms for both precious metal 
(regeneration) and oxide (storage) sites, using reactions 
from literature together with additional hypothesized steps.

• Infer kinetic parameters for regeneration mechanism by 
matching product distributions from steady flow 
temperature ramp experiments done at ORNL.

• Use Chemkin PLUG code to simulate (pseudo-) steady 
flow of reactant mixture through a catalyst monolith 
channel; temporarily discard storage mechanism.

• Use Sandia APPSPACK code to carry out optimization.

• Apply thermodynamic constraints to kinetic parameters 
in order to ensure complete consistency.
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Basic approach (continued)

• Infer kinetic parameters for storage mechanism by matching 
product distributions from cycling experiments done at 
ORNL.

• Use new Chemkin-based transient plug flow code to 
simulate inherently unsteady storage/regeneration 
processes.

• Incorporate thermodynamic constraints on kinetic 
parameters in storage mechanism.

• Use regeneration parameters previously determined 
(ideally) or allow adjustments and reconsider temperature 
ramp data.
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Recent accomplishments

• Formulated and implemented a complete set of 
thermodynamic constraints (all reactions treated as 
reversible with mass action kinetics).

• Completed construction of regeneration mechanism and 
optimization of kinetic parameters (72 adjustable, 96 total).

• Implemented a rate constant cap in order to alleviate 
mathematical stiffness.

• Verified thermodynamic consistency of regeneration 
mechanism via comparison of kinetic (tube flow) and 
equilibrium calculations.
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Recent accomplishments (continued)

• Identified several instances of steady state multiplicity in 
simulations of temperature ramp experiments.

• Initiated simulation of complete storage/regeneration cycles 
with combined mechanism.
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Summary of “final” regeneration mechanism

• 10 gas phase species: O2, NO, NO2, CO, H2, CO2, N2, H2O, 
N2O, NH3

• 13 surface species on precious metal (nominally platinum) 
sites: *(PT), O(PT), NO(PT), NO2(PT), CO(PT), H(PT), N(PT), 
OH(PT), H2O(PT), NH(PT), NH2(PT), NCO(PT), NH3(PT)

• No homogeneous gas phase reactions

• 24 surface reactions, all of them reversible (in principle; 
five are found to be effectively irreversible)
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The reaction set includes many adsorption/ 
desorptions (some dissociative) …

O2 + 2 *(PT) = 2O(PT)

NO + *(PT) = NO(PT)

NO2 + *(PT) = NO2(PT)

CO + *(PT) = CO(PT)

H2 + 2 *(PT) = 2H(PT)

H2O + *(PT) = H2O(PT)

NH3 + *(PT) = NH3(PT)

2N(PT) = N2 + 2 *(PT)

CO(PT) + O(PT) = CO2 + 2 *(PT)
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… and surface decomposition/recombinations.

NO2(PT) + *(PT) = NO(PT) + O(PT)

NO(PT) + *(PT) = N(PT) + O(PT)

H2O(PT) + *(PT) = H(PT) + OH(PT)

OH(PT) + *(PT) = H(PT) + O(PT)

NH(PT) + *(PT) = N(PT) + H(PT)

NH2(PT) + *(PT) = NH(PT) + H(PT)

NH3(PT) + *(PT) = NH2(PT) + H(PT)
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Indirect reduction with CO can take place via two 
distinct pathways.

Hydrogen production via a water-gas shift reaction:

H2O(PT) + CO(PT) = 2H(PT) + CO2

Reaction of water with an isocyanate intermediate:

N(PT) + CO = NCO(PT)

NCO(PT) + H2O(PT) = NH2(PT) + CO2 + *(PT)
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The remaining reactions can be categorized as 
atom transfers.

N2O + H(PT) = N2 + OH(PT)

2NO(PT) = N2O + O(PT) + *(PT)

NO2(PT) + CO(PT) = NO(PT) + CO2 + *(PT)

NO(PT) + NH2(PT) = N2O + 2H(PT)

NH3(PT) + O(PT) = NH2(PT) + OH(PT)
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Recap of steady flow experiments (ORNL)

• 21 separate runs with inlet compositions involving NO/H2, 
NO/CO, NO2/H2, NO2/CO, N2O/H2, N2O/CO, NH3/O2, 
NH3/NO, NH3, H2, or CO

• 5% H2O, 5% CO2, N2 carrier gas in all runs

• Temperature ramped from below 100 C to 500 C at 5 C/min

• Space velocity 100,000/hr

• Commercially available Umicore GDI LNT catalyst

• Chemiluminescent analyzers for NO and total NOx; FTIR 
for CO, NH3, and N2O; net N2 by difference
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For a stoichiometric NO/H2 feed, nearly all 
features are reproduced accurately.
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For NO with excess H2, the onset temperature for 
NH3 formation is now reproduced quite well.
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Reduction of NO2 by H2 is now simulated 
significantly better than before.
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For 1:10 NO2/CO, the observed two-step drop in 
CO is mostly smoothed out by the model.
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For reduction of N2O with a large excess of H2, 
the model predicts some NH3 formation.
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In direct oxidation of NH3 by O2, production of 
N2O tends to be seriously underpredicted.
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Oxidation of NH3 by a large excess of O2 is 
handled better, but NO appears too early.
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Thermodynamic consistency has been verified 
via infinite residence time tube flow simulations.
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Transient simulations confirm that the temperature 
ramps can generally be treated as pseudo-steady.

Temperature 
(C)

pseudo-steady transient
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The complexity of the mechanism causes multiple 
steady states to occur locally, generally at low T.
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Fully transient simulations show local non-
pseudo-steady behavior and hysteresis.
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The regeneration mechanism has been augmented 
with reactions occurring on storage sites.

NO2 + *(BAO) = NO2(BAO)

NO2 + NO2(BAO) = NO + NO3(BAO)

O2 + 2 *(BAO) = 2O(BAO)

NO + O(BAO) = NO2(BAO)

NO2 + O(BAO) = NO3(BAO)

CO2 + O(BAO) = CO3(BAO)

NO + CO3(BAO) = NO2(BAO) + CO2

NO2 + CO3(BAO) = NO3(BAO) + CO2

NO2(PT) + *(BAO) = NO2(BAO) + *(PT)
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Preliminary cycle simulations with the combined 
mechanism show the correct qualitative behavior.

Long cycle test on Umicore catalyst at 200 C and 30000/hr space velocity;

15 min lean (300 ppm NO, 10% O2), 10 min rich (625 ppm CO, 375 ppm H2)

experimentsimulation
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Conclusions and future directions

• A robust, thermodynamically consistent mechanism for LNT 
regeneration has been developed.

• The mechanism tends to underestimate N2O production 
during NH3 oxidation and overestimate NH3 production 
during N2O reduction.

• Multiple steady states can occur and appear to be the result 
of parallel paths for reduction of NOx by CO.

• The proposed storage mechanism seems promising, but 
much work on parameter estimation (at least) is needed.

• Eventually, companion mechanisms for reduction by 
hydrocarbons and for sulfation/desulfation will be required.
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