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ObjectivesObjectives

• Overall project goal:  Obtain the fundamental surface chemistry
knowledge needed for the design and optimal utilization of NOx trap
catalysts, thereby helping to speed the widespread adoption of this
technology.

• Specific objective:  Develop an elementary surface reaction
mechanism, complete with values for the kinetic parameters, that
accounts for the observed product distribution from a benchmark
lean NOx trap (LNT) during both normal cyclical operation and high-
temperature desulfation, allowing for variations in both temperature
and inlet gas composition.
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ApproachApproach

• Assemble tentative reaction sets for precious metal (catalytic), baria
(NOx storage), and ceria (oxygen storage) sites.

• Infer kinetic parameters for precious metal sites by matching product
distributions from steady flow experiments done at ORNL.
– Use Chemkin plug flow code to simulate flow of reactant mixture through a

catalyst monolith channel.
– Use Sandia APPSPACK code to find kinetic parameters by optimizing overall fit

to experimental data.
– Apply thermodynamic constraints during fitting procedure in order to ensure

complete consistency.
• Infer kinetic parameters for baria and ceria sites by matching

product distributions from long cycle experiments.
– Use transient plug flow code with allowance for radial mass transfer.

• Augment all three sub-mechanisms with reactions involving sulfur-
containing species, and estimate parameters from sulfation and
desulfation runs.
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Storage mechanismStorage mechanism

• The mechanism describing chemistry on the baria and ceria sites
involves nine new chemical species.
– On baria:  V(BAO), NO2(BAO), CO3(BAO), NO3(BAO), O(BAO), (OH)2(BAO),

BA(NO3)2 (“bulk” nitrate)
– On ceria:  V(CERIA), O(CERIA)

• Seven reversible reactions account for NOx storage on baria sites:
 O2 + 2V(BAO) = 2O(BAO)
 NO2 + O(BAO) = NO3(BAO)
 NO2 + NO2(BAO) = NO + NO3(BAO)
 NO2 + CO3(BAO) = NO3(BAO) + CO2
 (OH)2(BAO) + NO2 = NO3(BAO) + H2O
 (OH)2(BAO) + CO2 = CO3(BAO) + H2O
 NO2(BAO) + O(BAO) = NO3(BAO) + V(BAO)
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Storage mechanism (continued)Storage mechanism (continued)

• Three reactions describe formation of “bulk” nitrate:
 2NO3(BAO) = BA(NO3)2 + O(BAO)
 NO3(BAO) + NO2 = BA(NO3)2
 NO3(BAO) + NO2(BAO) = BA(NO3)2 + V(BAO)

• There are five spillover reactions (involving species on both BAO and PT):
 NO2(PT) + V(BAO) = NO2(BAO) + V(PT)
 NO3(BAO) + H(PT) = NO2(BAO) + OH(PT)
 NO3(BAO) + CO(PT) = NO2(BAO) + CO2 + V(PT)
 BA(NO3)2 + H(PT) = NO3(BAO) + OH(PT) + NO
 BA(NO3)2 + CO(PT) = NO3(BAO) + CO2 + V(PT) + NO

• Oxygen storage on ceria is described by just one simple reaction:
 O2 + 2V(CERIA) = 2O(CERIA)

• These reactions are combined with the precious metal mechanism and
used with a transient plug flow code (including radial mass transfer
resistance) to simulate complete storage/regeneration cycles.
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Simulation vs. experiment at 200 CSimulation vs. experiment at 200 C

• Simulation of NOx storage, release, and reduction (i.e., a complete
storage/regeneration cycle) at 200 C is basically successful.
– Artificially long cycle time is used to allow resolution of transients.
– Feed gas contains 288 ppm NO and 10% O2 during storage phase, 625 ppm CO

and 375 ppm H2 during regeneration phase.
– Principal failures are underprediction of N2O and overprediction of NO during

early part of regeneration.

Experiment Simulation
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Simulation vs. experiment at 300 CSimulation vs. experiment at 300 C

• The simulation at 300 C is likewise mostly successful but with some
noticeable imperfections.
– Predicted NO peak following the onset of regeneration is not observed

experimentally, but predicted slip of total NOx is not far off.
– Timing of NH3 spike is reproduced accurately, but peak is too high and narrow.
– In this case, N2O production is simulated fairly well.

Experiment Simulation
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Simulation vs. experiment at 400 CSimulation vs. experiment at 400 C

• Simulation of cycle at 400 C appears to be less demanding
(presumably dominated by equilibrium) and is correct in most
respects.
– Falloff in NO2 at onset of regeneration is somewhat too rapid.
– Well-known NO puff is reproduced very well.
– Once again, timing of NH3 pulse (quite small here) is correctly reproduced.

Experiment Simulation
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Axial profiles Axial profiles —— NH3 as reduction intermediate NH3 as reduction intermediate

• The oft-proposed role of NH3 as an intermediate in the reduction of
released NOx is consistent with the simulations.
– Near the leading edge of the unregenerated zone, excess reductant converts

desorbed NOx to NH3.
– As reductant is depleted, NH3 is oxidized by desorbed NOx and O2.
– After NH3 and original reductant have been consumed, stored NOx and O2

desorb unhindered and exit the reactor.
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Evolution of storage phase compositionsEvolution of storage phase compositions

• The simulations predict the changes in the storage phase
composition over the course of a cycle.
– During NOx storage, carbonates are (partially) replaced by nitrites and nitrates.
– At both 300 C and 400 C, but not 200 C, the baria phase is completely cleansed

of NOx during regeneration.

200 C 300 C



11

Predictions of short cycle behaviorPredictions of short cycle behavior

• The mechanism inferred from long cycle experiments can be used
to predict behavior during a short (60 s lean/5 s rich) cycle.
– First cycle begins with a completely clean surface.
– Simulation is isothermal (questionable) and now uses argon as the bath gas.
– Essentially no NOx escapes during first two lean periods.
– NH3 production during regeneration is attributable largely to CO.
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Sulfation/desulfation mechanismSulfation/desulfation mechanism

• A mechanism describing the effects of sulfur compounds on all
aspects of the chemistry has been developed but not yet finalized.
– 7 new species on PT:  SO2(PT), SO3(PT), H2S(PT), SO(PT), S(PT), HS(PT),

COS(PT)
– 1 new species each on baria and ceria:  SO4(BAO), SO4(CERIA)
– 18 new reactions (tentatively) on PT, accounting for SO2 oxidation during lean

phase and reduction of SO3 to H2S during desulfation
– 7 new reactions on baria and 1 on ceria, accounting for sulfate formation

• The overall mechanism has been used to simulate loss of NOx
storage capacity during normal cycling and evolution of products
during high-temperature desulfation.

• The mechanism is currently too complex for all parameters to be
extracted from experimental data; some reactions are inoperative.
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Simulation of long cycle with SO2 in feedSimulation of long cycle with SO2 in feed

• Simulations of long cycles with SO2 in the lean-phase feed can be
carried out to check the mechanism for qualitatively correct behavior.
– 10 ppm SO2 is added to the 288 ppm NO and 10% O2 already present.
– Spatially-averaged sulfate level rises linearly during storage (no SO2 slip) and

remains constant during regeneration (no desulfation).

No SO2 added 10 ppm SO2 added
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Spatial profile of sulfationSpatial profile of sulfation

• The simulations are also consistent with the observation that
sulfation of the NOx storage sites tends to be concentrated at the
front of the reactor.
– At ordinary cycle temperatures, sulfate permanently displaces both nitrite and

carbonate.

No SO2 added 10 ppm SO2 added



15

Preliminary simulation of desulfationPreliminary simulation of desulfation

• Simulation of desulfation by temperature-programmed reduction is
in reasonable qualitative agreement with experiment.
– After sulfation at 300 C, temperature ramped at 5 C/min under 0.1% H2.
– Experimental concentrations are in arbitrary units (i.e., magnitude unspecified).
– Simulated peaks should be shifted and reshaped by adjusting kinetic constants.

Experiment (ORNL) Simulation
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Future directionsFuture directions

• Complete evaluation of kinetic parameters describing sulfur
chemistry on precious metal, baria, and ceria sites.
– Reduce mechanism by discarding reactions if insufficient data exist to distinguish

between parallel pathways.
• Augment mechanism with reactions accounting for reductants other

than CO and H2.
– Unburned and/or partially burned hydrocarbons may play a role, depending on

mode of operation.
– Addition of reforming reactions should provide a bridge between hydrocarbon

reductants and existing mechanism.
• Develop computational tools to handle fully nonisothermal

simulations.
– Current code uses imposed (e.g., experimentally determined) spatial and

temporal variations in temperature.
– The capability to compute temperatures internally is obviously desirable,

especially for short cycle simulations.
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ConclusionsConclusions

• We have attempted to construct a complete mechanism for LNT
operation (including sulfation/desulfation) which involves (a) elementary
reactions obeying mass-action kinetics, (b) full and rigorous
thermodynamic consistency, and (c) both H2 and CO as reductants.

• We have used a three-tiered approach to developing the mechanism
and benchmarking it against experimental data.

– A mechanism for precious metal sites, based on steady flow experiments, has been
completed and published.

– A mechanism for NOx and O2 storage sites, based on long cycle experiments, has
been tentatively completed, although future modifications are possible.

– A supplemental mechanism for sulfur chemistry has been constructed, and preliminary
parameter evaluation has been accomplished.

• A fourth tier, aimed at simulating the use of reductants other than H2
and CO, is to be started shortly.

• Observed shortcomings in the simulations may be due to defects in the
mechanism or overly simplified modeling of the reactor (monolith
channel) itself.
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