Kinetic Modelling of Soot Oxidation The Effect of Different Carbons on a Kinetic Model

K. Leistner*+, A. Nicolle*,D. Berthout* and P. da Costa+

* IFP Energies nouvelles, Energy Application Techniques Division

+ Institut Jean Le Rond D'Alembert, University of Paris UPMC

K. Leistner - CLEERS 2012

Introduction

- Regeneration in Diesel particle filters (DPFs)
 - Oxidation of accumulated soot
- Uncatalysed oxidation
- Efficiency of regeneration
 reaction conditions
 nature of the soot

Structure of soot-like carbons

Scope

Semi-global mechanism

soot + O₂

Determine mechanistic parameters for a range of carbon materials

- Experiments
- Extract kinetic data
- How do the kinetics depend on the nature of the material?

$$r_j = A_j e^{-\frac{E_{a,j}}{RT}} \cdot S_a \cdot C_{O_2}^{n_j}$$

Reactor experiments

- Fixed bed of particles
 - diesel soot
 - graphite
- Conditions:
 - 100% Ar, 10 °C/min to T_{des}
 - 10% O₂ + 90% Ar at T_{des}
 - 250 ml/min at STP
- Experiments from the literature: coke, char, ethylene soot, carbon black, graphite

Reactor model

- described as a series of CSTRs
- $Pe = u L/D_{ax} \rightarrow RTD$ $\rightarrow 1 CSTR required$

$$\frac{\Delta P}{L_{bed}} = 150 \frac{(1-\varepsilon)^2}{\varepsilon^3} \frac{\mu v}{\overline{d}_p^2}$$

Reaction mechanism

1.
$$*C + \frac{1}{2}O_2 \rightarrow C(O)$$

2. $C(O) \rightarrow CO + *$
3. $C(O) + \frac{1}{2}O_2 \rightarrow CO_2 + *$

Reaction rates

$$r_j = k_j(T) \cdot C_{O_2}^{n_j}$$
$$= A_j e^{-\frac{E_{a,j}}{RT}} \cdot C_{O_2}^{n_j}$$

Source tems $\omega_{i} = \sum_{j=1}^{3} v_{j,i} r_{j} S_{a} M_{i}$ $\frac{d\theta_{k}}{dt} = \frac{\sum_{j=1}^{3} v_{j,k} r_{j}}{\Gamma}$

Diffusion limitations

Thermal limitations

 no noticeable exothermicity during experiments

External diffusion

- insignificant at low T
- fraction of external resistance < 2.5 10⁻³

Internal diffusion

$$\Phi = L_{\sqrt{\frac{n+1}{2} \frac{k C^{n-1}}{D_{eff}}}} \qquad r_{app} = \left[\frac{1}{\Phi} \frac{1}{\tanh(3\Phi)} - \frac{1}{\tanh(3\Phi)}\right] \cdot r_{int}$$

Φ << 0.3

Strategy of calibration

- Equations solved with the IFPExhaust library (AmeSim)
- Data used for calibration
 - TPO or IOs (2 different temperatures)
 - global mass consumption
 - reaction products
 - surface intermediates
 - no measurements available
 - > 10% of *Γ* (*Campbell&Mitchell*, 2008)

Assumptions:

- CO and CO₂ formation rate limiting
- O₂ adsorption fast
- *Γ* ≈ 2.10⁻⁵ mol/m²

- S_a determined from mass balance
 - Random pore model

Oxidation of diesel soot (ψ = 5)

Oxidation of graphite ($\psi = 0$)

Oxidation of ethylene soot

•*ψ* = 0

•experimental data: Du et al., 1991, Energy & Fuels, 5

Oxidation of char

• ψ = 2 (fit by Campbell and Mitchell, 2008

•experimental data: Campbell and Mitchell, 2008

Temperature-programmed oxidation of coke

Kinetics of different soot-like carbons

Conclusions...

- Important trends of oxidation reproduced: Global reactivity and CO/CO₂ selectivity of different carbon materials
- Kinetic parameters used to distinguish between different types of soot-like carbon

... and future developments

Confirm values

- More experimental quantities (surface species...)
- Microkinetics
 - confirm link with %C
 - model using distributions of activation energies

Thank you for your attention

kirsten.leistner@ifpen.fr

Supplementary slide (1)

Generation of the diesel soot used in experiments

Engine

Engine code	PSA DW10 BTED4 Euro 4
Displacement	$1998 \ \mathrm{cm}^3$
Fuel injection	common rail direct injection
EGR	none
Max. rated power	100 kW at 4000 min^{-1}
Max. rated torque	$320 \text{ Nm at } 1750 \text{ min}^{-1}$
Compression ratio	18
Fuel	
Cetane number	50.7
Lower heating value	41.72 MJ/kg
Aromatic content	22 wt. $%$

- Common rail diesel engine (DW10, PSA)
- ECE urban driving cycle (1500 rev/min, 5 bar)
- Soot collected on a DPNR at 340 °C

Supplementary slide (2)

Bhatia-Perlmutter random pore model : evolution of surface area

$$\frac{S_a}{S_{a,0}} = \sqrt{1 - \psi \ln(1 - x)}$$
$$\psi = \frac{4\pi L_0 \left(1 - \varepsilon_0\right)}{S_{a,0}^2}$$