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Motivation

New technologies in mechatronics and actuators have
enhanced the complexity of modern automotive systems.

Computational learning methods towards making
autonomous intelligent systems have become necessary.

The evolution of such systems is modeled as a controlled
Markov chain.

The problem is formulated as a sequential decision-making
under uncertainty.



Research objective

To establish a rigorous mathematical framework for
modeling the control problem of advanced propulsion
systems.

To formulate numerical algorithms that can solve these
problems.

To develop self-learning and adaptive control alorithms to
address deviations of the system operation from expected
behavior.

The emphasis is on applications related to HEVs/PHEVs,
engines and emissions systems.



Self-learning control of advanced propulsion systems

Develop the fundamental theory and control algorithms for
analyzing, and controlling advanced propulsion systems that can
learn to improve their performance over time while interacting
with their environment.



Outline

General model

Power management control of hybrid electric vehicles
(HEVs): series mode

Optimization of cold start emissions and fuel consumption
of plug-in electric vehices (PEVs)



Notation

Random variables are denoted by upper case letters, e.g.,
X.
The realization of the random variables is denoted by the
corresponding lower case letter, e.g., x.
The space of their realizations is denoted by script letters,
e.g., S.
Subscripts denote time and superscripts denote the
subsystem, e.g., Xi

t denotes the state of subsystem i at time
t.
Bold letters denote xt denote the vector of the realization
xit of each subsystem i at time t.



The model

Controlled system: xt+1 = f(xt,ut,wt),yt = h(xt,vt)

Controlled subsystem, i: xit+1 = f i(xit, u
i
t, w

i
t), y

i
t = hi(xit, v

i
t)

Controller: uit = µ(xt)

Objective: minπ∈Π limT→∞
1

T+1E
[∑T

t=0 k(xt,ut)
]



Controlled Markov chain

The model consists of:
A state space S of the system.
A control space U of the controller.
The state-dependent constraints; that is, for each state
i ∈ S, we are given a nonempty set C(i) ⊂ U of admissible
control actions.
The set of admissible state/action pairs

Γ: = {(i, u)|i ∈ S and u ∈ C(i)}.

A function k : Γ→ R called the cost function
(cost-per-stage).
The transition probability matrix P (·, ·) on S given Γ.



Problem formulation

A control policy π is a sequence of functions µ which map
the system’s state space, S, to the controller’s control
action space, U .
The long run average cost per unit time is

J(π) = min
π∈Π

lim
T→∞

1

T + 1
E

[
T∑
0

k(Xt, Ut)

]
. (1)

A control policy π is optimal if

J∗ = J(π) = inf {J(π)|π ∈ Π} . (2)



Equilibrium control policy

A control policy π∗ = {µ1, µ2, ..., µi, ..., µN} is an
equilibrium control policy if the policy yields the saddle
point of the product of the stationary probability
distribution β and cost function k, that is

k∗(1, µ1) < k∗(2, µ2) < ... < k∗(i, µi) < ... < k∗(n, µn) (3)

β∗1 > β∗2 > ... > β∗i > ... > β∗n,∀i ∈ S. (4)

The equilibrium control policy is an optimal policy1.

1A. A. Malikopoulos, "Equilibrium Control Policies for Markov Chains,"
in 50th IEEE Conference on Decision and Control and European Control
Conference, Orlando, Florida, December 12-14, 2011.



Power management control in a hybrid electric vehicle:
series mode

Power management control based on the equilibrium
control policy



Control scheme

State of the system:
Xt = Nengine

Control action: Ut = Pengine

Disturbance: Wt = SOC

Driving cycle
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Centralized controller yielding the equilibrium control
policy

Optimal BSFC with respect
to engine speed
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Optimal engine power with
respect to engine speed
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Simulation results

SOC variation

0 200 400 600 800 1000 1200 1400 1600 1800
66.5

67

67.5

68

68.5

69

69.5

70

S
O

C
 [

%
]

time (s)

Fuel consumption

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time [sec]

F
u

e
l 
C

o
n

s
u

m
p

ti
o

n
 A

c
c
u

m
u

la
ti
v
e

 [
k
g

]

 

 

Conventional with ISA

Series Hybrid



Simulation results (Cont.)

SOC variation with 62%
initial SOC
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initial SOC
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Optimization of cold start emissions and fuel
consumption of PEVs

Joint work with Zhiming Gao and C. Stuart Daw

Optimize catalyst warming up process for the purpose of
mitigating tailpipe emissions in PEVs exposed to multiple
engine cold start events.
Integrate optimal engine and catalyst cold start strategies
with the supervisory PEV power management controller
with the aim to improve fuel economy.
Develop a self-learning control scheme able to address
catalyst aging effects that lower overall catalyst conversion
efficiency.



Aftertreatment challenges
Current stoichiometric TWC catalysts lightoff at higher
temperatures.
Poisoning and aging shift lightoff to even higher temperatures2.

2ACEC Future Aftertreatment Strategy Report to the Advanced
Powertrain Leadership Council, U.S. DRIVE, November 8, 2011.



Control scheme

State of the system: Xt = Tcatalyst

Control action: Ut = Pengine

Disturbance: Wt = SOC

Cost function: k = (Xt, Ut)=fuel consumption and catalyst
conversion efficiency



Research path for "green" technologies



Autonomous intelligent plug-in electric vehicles (PEVs)
Develop the theoretical framework and control algorithms for
making a PEV into an autonomous intelligent system capable of
realizing its optimal operation in real time while the driver is
driving the vehicle.



iVEHICLE (intelligent VEhicle and HIghway
Communication Leveraged for Efficiency)

The iVEHICLE represents an exciting new approach to
improving the overall efficiency of PEVs by utilizing an
optimization framework and control algorithms to allow
communication between PEVs and advanced traffic information
systems.

32



Concluding remarks

The necessity for environmentally conscious vehicle designs
has led to significant investment in enhancing the
propulsion portfolio with new technologies.

Self-learning control can aim to allow continous optimal
operation of advanced propulsion systems.

Recognition of equilibrium control policies may be of value
in making advanced propulsion systems capalble of
realizing their optimal operation in real time while the
driver is driving the vehicle.
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Bang-bang control

SOC variation
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