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“Autonomy” and “Intelligence” in Artifacts 

Images from Google  



…why do we need Autonomous Intelligent Propulsion Systems…?  
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Outline 

£  Optimization and control of vehicle propulsion systems 
¤  Transient operation 

£  Making autonomous intelligent propulsion systems 
¤  Theoretical framework  

£  Case study 

£  Concluding remarks 
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Engine Operation 

Image from Encyclopedia Britanica 
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Control of Engine Operation 

£  The Electronic Control Unit (ECU) in a vehicle is an embedded 
system that aims to control engine operation.  
¤  The ECU receives signals from several sensors and uses this 

information to maintain optimal engine operation with respect to fuel 
economy and emissions. 

£  Increasing demand for improving fuel economy while meeting 
emission regulations has enhanced the functional range of ECUs. 

£  Current ECUs perform a variety of control tasks providing values of 
engine variables that are referenced by several actuators.  
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Engine Calibration 

£  The optimal values of these variable are essential for achieving high 
engine performance and fuel economy while meeting emission 
standards.  

£  Engine calibration is suited for realizing the optimal values of these 
variables associated with different engine operating points. 

£  More formally, engine calibration is defined as the procedure 
required to optimize one or more engine performance indices, e.g., 
fuel economy, emissions, engine power, etc., with respect to the 
engine controllable variables. 
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Engine Calibration (Cont.) 

£  State-of-the-art calibration methods of ECUs derive static maps that 
provide the values of several controllable variables with respect to 
steady-state engine operating points. 
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Transient Engine Operation 

£  Impact of 1-9 bar transient load (BMEP)  
step at 2000 rpm  
(Hagena, J.R., et al. 2006). 

Instantaneous load increase                          5-second load increase 



10 

Transient Engine Operation (Cont.) 

£  Transients immediately before the steady-state operating points that 
constitute the baseline for engine calibration are associated with 
different fuel consumption and emission values. 
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Transient Engine Operation (Cont.) 

£  The sequences of engine operating points are designated by the 
accelerator pedal position rates (driver’s driving style). 

£  The huge number of different sequences encountered from different 
“driving styles” prohibits a-priori optimization. 

£  Those sequences associated with the driver’s driving style can be 
estimated, and thus, the values of the controllable variables can be 
derived in real-time. 
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Research Hypothesis 

£  Transient engine operation can be addressed by 
¤  Estimating the sequences of engine operating point transitions 

designated by the driver, and  
¤  Deriving the values of the controllable variables for these sequences. 
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Research Objective 

£  The research objective is to make the engine of a vehicle an 
autonomous intelligent system capable of realizing its optimal 
calibration while the driver drives the vehicle. 

£  Through this approach the engine should be able to:  
¤  progressively perceive the driver’s driving style, and  

¤  learn to optimize one or more engine performance indices, e.g., fuel 
consumption, emissions, etc, for this particular driving style; namely, 
personalize engine calibration for each driver. 
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Research Objective (Cont.) 

£  Two major problems are involved: 
¤  Engine identification problem 

¡  The estimation of engine operating point transitions requires the 
realization of engine operation. 

¤  Stochastic control problem 
¡  Selecting the values of controllable variables that optimize specified 

engine performance indices, e.g., fuel consumption, emissions, 
engine power, etc, for the derived realization. 
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Stochastic System Model 

 
 
 
 
 
 
 
where  

¡  k indexes discrete time (decision epochs),  
¡  sk is the state (engine operating point),  
¡  αk is the control action (value of the controllable variable),  
¡  wk is the accelerator pedal position (unknown disturbance),  
¡  fk is a function that describes how the state is updated,  
¡  hk is a function that describes how the engine output is updated,   
¡  vk is the unknown measurement error or noise, and  
¡                           is the control policy, where      is a sequence of 

functions, 
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Modeling Engine Operation as a Controlled Markov Chain 

£  Engine operation is modeled as a controlled Markov chain. 

£  The evolution of a Markov chain can be seen as the motion of a 
notional particle which jumps between the states of the state space 
at each decision epoch. 

£  The problem of engine calibration is thus reformulated as a 
sequential decision-making problem under uncertainty. 
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New Problem Formulation 

£  A controlled Markov chain is considered with: 
¡  Discrete time steps referred to as decision epochs  

 

¡  a finite state space 
¡  Engine operating domain 

¡  a finite action space 
¡  Feasible set of the values of controllable variables 

¡  the transition probability matrix 
where  
¡  Realization of engine operating point transitions 

¡  The transition cost (or reward) matrix 
where  
¡  Engine performance indices, e.g., fuel consumption, emissions, 

etc 
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The Predictive Optimal Decision-making Learning Model 

£  The Predictive Optimal Decision-making (POD) [1,2,3] computational 
learning model consists of a state-space representation 

!S:={ !sk +1
ij | !sk +1

ij ! sk = i "
µ (sk )#A (sk )

sk +1=j}

Markovian 
domain 

POD domain 

1. Malikopoulos, A.A., Papalambros, P.Y., and Assanis, D.N., “A Real-Time Computational Learning Model for Sequential Decision-
Making Problems Under Uncertainty,” ASME J. Dyn. Sys., Meas., Control, Vol.131, No. 4, 2009, 041010(8). 

    2. Malikopoulos, A.A.., “Convergence Properties of a Computational Learning Model for Unknown Markov Chains,” ASME J. Dyn.   
Sys., Meas., Control, Vol.131, No. 4, 2009, 041011(7). 

    3. Malikopoulos, A.A., “A Lookahead Control Algorithm for Discrete-Time Stochastic Systems,” Proceedings of the 2010 ASME 
Dynamic Systems and Control Conference (DSCC), Boston, MA, Sep. 13-15. (to appear) 
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Basic Assumptions 

£  The Markov chain is homogeneous 
 

£  The states of the Markov chain are ergodic, namely, they are 
positive recurrent and aperiodic. 

£  The Markov chain is irreducible, that is, for every pair of states                            
                        the states intercommunicate , , ,i j i j≠ ∀ ∈S , , .i j i j↔ ∀ ∈S

1 1 0( | ) ( | ),ij k k ijs j s i s j s i+ = = = = =P P 0, , .k i j∀ ≥ ∀ ∈S
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Convergence of the POD Model to Stationary Distribution 

Theorem 1 [1] : The POD state representation generates the stationary 
distribution ρi of the Markov chain. 

Sketch of Proof: 
¤  Since the chain is ergodic with irreducible states, it is quarantined that 

the chain has a unique stationary distribution 

¤   The partition of the POD model is irreducible, that is 

¤  The mean recurrence of each partition      is equal to the mean 
recurrence time of its corresponding state, that is 

¤  The stationary distribution of the Markov chain is given by the mean 
recurrence time of each partition, namely 

1, .i i i−= ∀ ∈Sρ µ

µi = µ !Si ,!i "S.

!Si ! !S j ,"i , j #S.

!i = µ !Si
!1,"i #S.

!Si

    1. Malikopoulos, A.A.., “Convergence Properties of a Computational Learning Model for Unknown Markov Chains,” ASME J. Dyn. 
Sys., Meas., Control, Vol.131, No. 4, 2009, 041011(7). 
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Case Studies 

£  To validate the efficiency of the POD computational learning model 
various case studies have been conducted including: 
¤  Cart-pole balancing problem [1] 
¤  Vehicle cruise-control application [1] 
¤  Autonomous intelligent propulsion systems [2,3,4] 

¡  Gasoline engine with respect to spark ignition angle over aggressive 
acceleration profiles. 

¡  Diesel engine with respect to injection timing over an acceleration 
and deceleration profile. 

¡  Diesel engine with respect to injection timing and VGT over a 
segment of the FTP-75 driving cycle. 

1.  Malikopoulos, A.A., Papalambros, P.Y., and Assanis, D.N., “A Real-Time Computational Learning Model for Sequential Decision-
Making Problems Under Uncertainty,” ASME J. Dyn. Sys., Meas., Control, Vol.131, No. 4, 2009, 041010(8). 

2.  Malikopoulos, A.A., Papalambros, P.Y., and Assanis, D.N., “Online Self-Learning Identification and Stochastic Control for 
Autonomous Internal Combustion Engines,” ASME J. Dyn. Sys., Meas., Control, Vol.132, No. 2, 2010, 024504(6).  

3.  Malikopoulos, A.A., Assanis, D.N., and Papalambros, P.Y., “Real-Time, Self-Learning Optimization of Diesel Engine Calibration,” 
ASME J. Eng. Gas Turbines Power, Vol. 131, No. 2, 2009,022803(7). 

4.  Malikopoulos, A.A., Assanis, D.N., and Papalambros, P.Y., “Optimal Engine Calibration for Individual Driving Styles,” Proceedings of 
the Society of Automotive Engineers World Congress, Detroit, MI, April 14-17, 2008. 
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£  Four-cylinder, 1.9L turbocharged diesel engine  

¤  Real-time, self-learning optimization of engine calibration with respect to 
injection timing and Variable Geometry Turbocharged (VGT) vane position.  

£  The objective is to maximize engine torque, while the driver drives the 
vehicle, with respect to injection timing and VGT. 
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¤  The vehicle model was run 

repeatedly over the same 
speed profile (segment of 
FTP-75 driving cycle), to 
represent a situation in which 
the driver desires a particular 
vehicle’s speed profile 
deemed characteristic of his/
her driving style.  

¤  The belief implicit here is that 
if the controller can 
successfully capture this 
profile, then it will also be able 
to capture engine realization 
designated by a driver in long 
term.  
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Autonomous Intelligent Diesel Engine: Optimal Injection Timing 
and VGT  
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Autonomous Intelligent Diesel Engine: Results 

£  Optimal injection timing and VGT through learning. 
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Autonomous Intelligent Diesel Engine: Results (Cont.) 
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£  Accelerator pedal position rate for the same engine speed. 
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Autonomous Intelligent Diesel Engine: Results (Cont.) 
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£  9.3% overall improvement of fuel economy. 
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Autonomous Intelligent Diesel Engine: Results (Cont.) 
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£  Emission temperature and NOx concentration. 
 

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

Time [sec]

Em
is

si
on

 T
em

pe
ra

tu
re

 [K
]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time [sec]
N

O
x 

C
on

ce
nt

ra
tio

n 
[%

]

Baseline Engine Calibration
Real-Time, Self-Learning Calibration



28 

Concluding Remarks 

£  Current engine optimization and control methods seldom guarantee 
optimal engine operation for common driving habits, e.g., stop-and-
go driving, rapid acceleration, or rapid braking.  

£  The ultimate goal of this approach is to fully exploit existing 
propulsion technologies in terms of fuel economy and pollutant 
emissions. 

£  It aims to address the following question: “For a given propulsion 
system, what is the maximum efficiency that we can get with respect 
to our driving habits?”  
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Time to Revolutionize the DNA of the Automobile 



Thank You for Your Attention!	

Q & A	



