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 Brief Introduction to Urea-SCR Modeling

• Model Based Estimator and Control System Design

• Development of Sensor Models

• Simulation Based Analysis of NH3 Sensor Feedback

• Results
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Phenomena in a SCR Catalyst 
- An Overview

3

NH3 is the only species assumed to adsorb/desorb 
from the active sites of the catalyst.

Lietti, 1998., Nova, 2001

According to Eley Rideal mechanism, strongly adsorbed NH3 reacts with a weakly 
adsorbed NO and NO2 (gas/surface phase NO and NO2) on the monolith wall. 
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The objective of the higher order model (HOM) is to 
accurately predict the concentrations of NO, NO2 
and NH3 species based on mass transfer and chemical 
kinetics of various reactions.

Urea 

Injection

SCR
Exhaust

Gas

Outer wall of

the "can"

Monolith

wall

Monolith

insulation

D

a

∆x

Exhaust

Gas Flow

Wall

Thickness
a

High-Level Illustration of the Urea-SCR
Aftertreatment System

Idealized Illustration of a Flow Through
Catalyst Cross-section

A Single Square Channel of a Urea-SCR Catalyst 
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Higher Order Model 
(HOM) - Modeling 
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Relevant Chemical 
Reactions and 

Kinetics

4NH3 + 2NO + 2NO2 → 4N2 + 6H2O

Chemical Reaction Reaction Rate

4NH3 + 4NO + O2 → 4N2 + 6H2O

4NH3 + 3NO2 → 7/2N2 + 6H2O

4NH3 + 5O2 → 4NO + 6H2O Rfox = kfoxθΩ

4NH3 + 3O2 → 2N2 + 3H2O

NO + 1/2O2 → NO2 Rno,oxi = kno,oxiCNOC
1

2

O2

NH3 + S → NH
∗

3

NH
∗

3 → NH3 + S

ki = Aie
−

Ei
RT

Fast SCR

Standard SCR

Slow SCR

Fast NH3 Oxidation

Slow NH3 Oxidation

NO Oxidation

NH3 Adsorption

NH3 Desorption

Reaction Name

The reaction rate constants (K) are defined by the Arrhenius 
law defined as

A - Pre-exponential factor of the reaction
E - Activation energy of the reaction

R1 = k1Cs,NOCs,NO2
θΩ

R2 = k2Cs,NOCO2
θΩ

R3 = k3Cs,NO2
θΩ

R4 = k4θΩ

R5 = k5(1 − θ)Cs,NH3
Ω

R6 = k6θΩ

(i = 1...6)

neglected
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Experimental Testing 
- Approach Followed

6

• Experiments were conducted on a Navistar 
I6 7.6L engine at Bodycote testing facilities in 
Toronto, Canada.

• Four independent measurements were taken 
using 2 FTIR analyzers and 2 Horiba emission 
benches as shown.

Experimental Set-up 
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• A total of 13 parameters have to be 
identified for the 4 state model. These 
include the pre-exponential factors (As) 
and activation temperatures (Es) of the 6 
reactions and the total ammonia 
adsorption capacity (Omega) in the 
catalyst.

SCR Catalyst Modeling and Evaluation of 
Control Strategies for NOx Reduction in Diesel 

Engine Exhaust Aftertreatment Systems

Maruthi Devarakonda, Gordon Parker and John Johnson
A Presentation to

International Truck and Engine Corporation, April 04 2007

1



Parameter ID as an 
Optimization 

Problem

7

The parameter identification problem is formulated 
as an optimization problem. Matlab’s simplex 
method based optimization function ‘fminsearch’ is 
used.

Find the model parameters (  ) where     are the 
pre-exponential factors and activation 
temperatures of the reactions, which

Minimize 

xi

J =
1

N

N∑

i=1

(yi,s − yi,t)
2

where N is the number of test data points. The cost function can be further expanded and 
expressed as

y = NO, NO2, NH3

J =
1

N

N∑

i=1

(yNO,s − yNO,t)
2 + (yNO2,s − yNO2,t)

2 + (yNH3,s − yNH3,t)
2

yi,s is the simulated concentration of the species in PPM

yi,t is the concentration of the species from the tests in PPM

xi
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Model Validation of the 
4 State Model

8

4 State Model Validation Based on Test Data
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Figure 6: 4 state model validation using test data from the engine. The concentrations of species from the identified 4 state
model are represented by solid lines and the downstream concentrations from the test data (ENGINE) are represented by
dashed-dot lines.
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Figure 7: Demonstration of reduced order models for model-based control system design shown in reference [8]. The
concentrations of species from the 4 state model represented by solid lines is compared with the Higher Order Model
(HOM), denoted as dashed lines.
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 Brief Introduction to Urea-SCR Modeling

• Model Based Estimator and Control System Design

•  Development of Sensor Models

•  Simulation Based Analysis of NH3 Sensor Feedback

• Results
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Overview of the NO-
NO2 Strategy

• Model-based state estimator
• Full state feedback, nonlinear control law

Both the estimator and 
the control strategy are 
based on a 4-state, 
reduced order model.

Control System

SCR

Estimator

Control
Laws

CNH3,in

ηT,des

CNO,in, CNO2,in

CNO,out,meas

CNO2,out,meas

CNO,in, CNO2,in

CNO,out,est

CNO2,out,est

θest

CNH3,out,est

Urea Injection Rate
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State Estimator for 
NO-NO2 Strategy

!L
!f

A linear state estimator from the reduced order model can be written as 

•      must be chosen such the estimator is stable. Since the linear 
portion of     is stable, this should be possible.

• If the NO and NO2 states converge quickly, the correction term 
vanishes and convergence will follow the natural NH3 dynamics. 

{

ĊNO,est

ĊNO2,est

θ̇est

ĊNH3,est

} = !f(CNO,est, CNO2,est, θest, CNH3,est, CNO,in, CNO2,in)+!L(CNO,meas+CNO2,meas−CNO,est−CNO2,est)

11

L̄ = [−5;−5; 10000; 0]T
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• Minimize NO and NO2 out
• Minimize NH3 out

• NOx Conversion Efficiency

• Modified Conversion Efficiency

Goals

Performance 
Metrics

Control
Objective for NO-NO2 

Strategy

Ref:  Van Nieuwstadt, Upadhyay, IMECE 2002

ηT =
CNO,in + CNO2,in − CNO,out − CNO2,out − αCNH3,out

CNO,in + CNO2,in
= ηNOx−α

CNH3,out

CNO, in + CNO2,in

ηNOx =
CNO,in + CNO2,in − CNO,out − CNO2,out

CNO,in + CNO2,in
= 1 −

CNO,out + CNO2,out

CNO,in + CNO2,in

• For the present work, the efficiency has been modified as a function 
of NO and NO2, instead of NOx, as cited in the prior art.

ηT =

CNOx,in − CNOx,out − αCNH3,out

CNOx,in
= ηNOx

− α
CNH3,out

CNOx,in
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Sliding Mode Control 
(SMC) for NO-NO2 

Strategy

Desired Response

• Use the 4 state model to compute           such that the 
desired output is achieved, taking into consideration 
dynamic effects. 

• Build in a correction term that guarantees stability and 
robustness to model, measurement, and disturbance 
errors.

Recall:

Define a new quantity:

where is simply a linear combination of the 4 state model states.

SMC Approach

CNH3,in

ηT,des = 1 −

CNO,des + CNO2,des + αCNH3,des

CNO,in + CNO2,in

= 1 − pdes

p̄des = pdes(CNO,in + CNO2,in) = CNO,des + CNO2,des + αCNH3,des

p̄ = CNO + CNO2
+ CNH3

13
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SMC Algorithm for 
NO-NO2 Strategy

Define:

The response goal can be 
expressed as:

or

Substituting in the 4 state model equations gives the dynamic portion of the control law:

˙̄pdes − ĊNO − ĊNO2
− αĊNH3

= 0

ep̄ = p̄des − p̄

ep̄ = ėp̄ = 0

The complete control law is created by appending a correction term that 
penalizes deviations from the objective of           , ep̄ = 0

CNH3,in = CNH3,in,dyn − Γsgn(ep̄)

14

The estimator gains are tuned in the simulation and are
obtained as !L = [−5; −5; 10000; 0]T . With these gains,
the error in the true and estimated states are found. Test
data from the test shown in Figures 3 and Figure 5 are
used as input to tune the estimator gains. The percent-
age absolute error between the true states and estimated
states for all the states goes to 0.005% within t = 5 secs
of simulation time. This indicates that the estimator gains
used yield a faster convergence to the true states.

Here, the control objective is to minimize the NO, NO2 and
NH3 slip from the SCR catalyst. A modified conversion
efficiency in NO, NO2 and NH3 is defined in Eq. 28.

ηT =
CNO,in + CNO2,in − CNO,out − CNO2,out − λCNH3,out

CNO,in + CNO2,in

= ηNOx − λ
CNH3,out

CNO,in + CNO2,in

(28)

This definition is used in defining the response goal which
can be expressed as ep̄ = ėp̄ = 0 where ep̄ = p̄des − p̄ and
p̄ is a linear combination of the 4 state model states CNO,
CNO2 and CNH3 . Substituting the model equations in the
response goal, the dynamic portion of the control law is
obtained as shown in Eq.29.

CNH3,in,dyn =CNH3,est +
1
λ

(CNO,est + CNO2,est

−CNO,in − CNO2,in) +
1
Q̄

(k5Ω(1− θest)CNH3,est

−k6Ωθest) +
1

λQ̄
( ˙̄pdes + 2Ωθestk1CNO,estCNO2,est

+Ωθestk2CNO,estCO2 + Ωθestk3CNO2,est)
(29)

The complete control law is created by appending a cor-
rection term that penalizes deviations from the objective
of ep̄ = 0 as shown in Eq. 17. For both the strategies, λ is
set to 0.1 and γ is set to 0.05 and ˙̄pdes is set to 0.0.

The control system performance evaluation for both the
strategies is performed using a higher order SCR model.
The urea injection profile generated by each of the strate-
gies is fed as input to the higher order model and the
concentrations of NO,NO2 and NH3 from the model are
compared. In addition, the urea injection flow rates, NOx

conversion efficiency and NH3 storage are evaluated.Two
performance metrics are defined to analyze the control
strategies in the simulation and the performance is de-
fined by the NOx index and urea index. Input data from
the test shown in Figures (5)-(7) are used to test the con-
trol strategies in the simulation.

The NOx index is defined as the grams of NOx converted
per grams of urea injected and is given by Eq. 30.

∫ tf

t0
ṁNO2,eq,indt−

∫ tf

t0
ṁNO2,eq,outdt

∫ tf

t0
ṁurea,injdt

(30)

Here, ṁNO2,eq is defined based on US EPA’s approach
of defining NOx regulations (x = 2) where the total NOx

at catalyst in and catalyst out is calculated as an equiva-
lent of NO2. Also, such approach has been suggested in
reference [16]. Hence, ṁNO2,eq,in is calculated from the
concentrations of NO and NO2 in PPM as a function of
the molecular weight of NO2 and is defined in Eq. 31.

ṁNO2,eq,in =

∫ tf

t0
CNO,indt +

∫ tf

t0
CNO2,indt

MWexh
MWNO2 ṁexh

(31)
ṁNO2,eq,out is calculated in the same manner and is de-
fined in Eq. 32.

ṁNO2,eq,out =

∫ tf

t0
CNO,outdt +

∫ tf

t0
CNO2,outdt

MWexh
MWNO2 ṁexh

(32)

Urea index is calculated based on the stoichiometry of the
reactions in the urea-SCR catalyst defined in Eq. 33. One
mole of urea forms 2 moles of NH3 that reacts with NO
and NO2 in the catalyst. NH3 reacts with NO stoichiomet-
rically, but in the case of NO2, one mole of NH3 reacts
with 3/4th mole of NO2.

∫ tf
t0

(ṁNO,in−ṁNO,out)dt

2∗30 + 2
∫ tf
t0

(ṁNO2,in−ṁNO2,out)dt

3∗46∫ tf

t0
ṁurea,injdt

(33)

The NOx index and the urea index using the NO-NO2

based closed-loop strategy increased by 45.5% with
43.6% lesser urea injected than the NOx based strategy
as shown in Table 3. The total NH3 slip from the catalyst
is calculated from both the strategies using the equation
shown in Eq. 34.

ṁNH3,out =

∫ tf

t0
CNH3,outdt

MWexh
MWNH3 ṁexh (34)

Here, MWNH3 is the molecular weight of NH3 (MWNH3 =
17 grams/gm − mole). Comparing both the strategies,
the total NH3 slip decreased by 86.5% using the NO-NO2

strategy than the NOx based strategy. Table 3 compares
the control strategies based on the NOx index, urea index,
total urea injected and total NH3 slip.

The species concentrations from the SCR catalyst based
on the NO-NO2 based control strategy are compared with
their corresponding concentrations from the NOx based
strategy as shown in Figure 10. Similarly, the urea injec-
tion profile, NOx conversion efficiency and NH3 storage
from both the strategies are shown in Figure 11. The dif-
ference in the urea injection flow rates in Figure 11 is at-
tributed to the higher NH3 storage in the catalyst based on
the NO-NO2 strategy than the NOx based strategy. The
stored NH3 is effectively utilized in the case of the NO-
NO2 strategy, resulting in less NH3 slip as shown in Fig-
ure 10. The high NH3 storage in Figure 11 is because of
the high reaction rates involving NO2 in the 4 state model,
on which the NO-NO2 strategy is based on.

A cold FTP test was run to evaluate the closed-loop con-
trol strategies in the simulation. Two SCR catalysts in
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The complete control law is created by appending a correction term that 
penalizes deviations from the objective of            , 

CNH3,in = CNH3,in,dyn − Γsgn(ep̄)

Ensuring stability in the presence of model, measurement and disturbance 
uncertainty places constraints on the design parameter    . These constraints are 
developed using Lyapunov’s Direct Method illustrated below.

Create a candidate Lyapunov function: V =
1

2
e
2

p̄

If             for the 4 state model dynamics, then the closed loop system is 
asymptotically stable.

V̇ = ep̄ėp̄ = −Γ|ep̄|

Thus,            guarantees closed loop stability.

ep̄ = 0

Γ

V̇ < 0

Γ > 0

SMC Law for NO-
NO2 Strategy

15
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Brief Introduction to Urea-SCR Modeling

Model Based Estimator and Control System Design

• Development of Sensor Models

• Simulation Based Analysis of NH3 Sensor Feedback

• Results
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Approach

17

• NOx sensors are placed 
downstream of the catalyst to 
provide NOx feedback to the 
closed loop control system which 
determines the urea injection 
rate.

• State-of-the-art NOx sensors 
have cross-sensitivity towards 
NH3 which is a limitation for 
accurate NOx feedback.

• This limitation can be overcome 
through a NOx sensor model 
which determines the individual 
components of the sensor signal.

• One other approach is to use an 
NH3 sensor which from the 
literature does not possess any 
cross-sensitivity.

Problem Description

Approach Followed

Urea 
Injection 
System

Diesel 
Injection
System

SCR 2SCR 1CPFDOC
Engine 

Out

α β γ

Horiba Emission Bench (EB)

FTIR

ζ

Figure 5.1: Schematic of the aftertreatment test set-up used for experimen-
tal testing

where S is the NOx sensor signal in PPM, A1, A2 and A3(α) are the coefficients to

be obtained from the NOx sensor model. α is given by Eq. 3.16. For experimental

validation, CNO, CNO2 and CNH3 are the concentrations obtained from the FTIR

analyzer at the SCR 2 outlet (γ).

In order to obtain the coefficients, A1 and A2, data from the NOx sensor and the FTIR

during no urea injection was compared and the comparison is shown in Figure 5.2.

The coefficients are determined as A1 = 1.0 and A2 = 0.95 with a mean of 1 PPM and

a standard deviation of 2 PPM. The coefficient A3 is determined as a function of α

for various test cases and is shown in Figure 5.3. The functional relationship between

A3 and α is used in the NOx sensor model. The sensor model is validated using two

different sets of test data. Exhaust gas temperature and α are also shown on the

figures to illustrate the effect of these variables on the NOx sensor signal. Figure 5.4

shows the validation of NOx sensor model using the data from test 1B as input. It

is observed that the sensor model compares with the test data even during high urea

125

• A NOx sensor model is developed 
based on the test data and is 
experimentally validated.

• The linear system based on NH3 sensor 
feedback is analyzed for state estimation 
design.

• Using a two catalyst model in series and 
further reducing the 4 state model to a 
single state model for real-time 
implementation, the sensor models are 
validated.

• The control systems based on their 
respective sensor models are compared 
and analyzed.
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The NOx sensor model is designed based on the NOx sensor signal and 
the concentrations from the FTIR analyzer downstream of the SCR 
catalyst.  As the state-of-the art NOx sensor is cross-sensitive to             
is calculated as a function of     which is the ratio of ammonia (from the 
urea injection flow rate) injected (           ) in PPM to the engine out 
NOx from the engine out NOx sensor/virtual NOx sensor (           ) in 
PPM (Ref: Schar, 2003)

NH3, A3

α

α =

NH3, in

NOx, in

NOx, in

NH3, in

NH3, in = 2.0 ∗

ṁurea

ṁexh

MWexh

MWurea

∗ 1E6

ṁurea is the mass flow rate of urea injected and ṁexh is the mass flow rate of 

exhaust gas. MWurea is the molecular weight of urea (60 grams/gram-mole)

MWexh is the molecular weight of exhaust gas (28.8 grams/gram-mole)

18

NOx Sensor Model
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NOx sensor signal can be represented as
as a function of NO, NO2 and NH3 concentrations as shown in Eq. 5.1.

S = A1CNO + A2CNO2 + A3(α)CNH3 (5.1)

where S is the NOx sensor signal in PPM, A1, A2 and A3(α) are the coefficients to

be obtained from the NOx sensor model. α is given by Eq. 3.16. For experimental

validation, CNO, CNO2 and CNH3 are the concentrations obtained from the FTIR

analyzer at the tail pipe (γ).

In order to obtain the coefficients, A1 and A2, data from the NOx sensor and the FTIR

during no urea injection was compared and the comparison is shown in Figure 5.2.

The coefficients are determined as A1 = 1.0 and A2 = 0.95 with a mean of 1 PPM and
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Figure 5.2: Comparison of the NOx sensor model and NOx sensor signal
during no urea injection using test 1B data as input.
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where S is the sensor signal in PPM.

CNO, CNO2
and CNH3

are the concentrations from the FTIR analyzer at the tail pipe.
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There is significant scatter in the data related to;

• accuracy of measurements both by NOx sensor and FTIR, especially at low concentrations
• signal delay and dispersion in FTIR due to relatively long sampling pipes, different for each individual 
component due to differences in their interaction with the walls

Alternatively at low concentrations, it can be assumed that the coefficients Ai are constants as given below:
A1 = 1.0
A2 = 0.95
A3 = 1.0
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Figure 5.5: Experimental validation of NOx sensor model using test 3 data
as input

The NOx sensor model predicts the trend corresponding to NOx slip but fails to

predict the NH3 slip as seen in Figure 5.6. This leads to a conclusion that the NOx

sensor signal might also be a function of an operating variable such as exhaust gas

temperature.

5.2 Model Based Validation of NOx Sensor Model

The NOx sensor model is validated in simulation by using the sensor model in conjunc-

tion with a catalyst model. As the NOx sensor is placed at the tail pipe, downstream

of two SCR catalysts, the catalyst model used for model based NOx sensor validation

is a two catalyst model. The two catalyst model is an extension of the 4 state model
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Experimental validation of the sensor model using 
test data
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Figure 5.6: Experimental validation of NOx sensor model using test 2 data
as input

explained in Chapter 4. The model predicted concentrations are passed through the

NOx sensor model explained in Section 5.1 and the estimated signal is compared with

the actual NOx sensor signal.

5.2.1 1 State Model for Real Time Implementation

The 4 state model introduced in Chapter 4 is a reduced order model with NO, NO2

and NH3 concentrations and NH3 storage (θ) as the dynamic states. As the time

constants associated with the concentrations in the 4 state model are of the order

of micro seconds, the 4 state model cannot be used for real time control strategy

implementation. Therefore, the 4 state model is further reduced to a 1 state model
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Experimental validation of the sensor model using 
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✓ Needs more work on understanding the impact 
of alpha on the sensor model
✓ Alternatively any other formulation of the sensor 
model as a function of individual species 
concentrations and other factors need to be 
explored.



Overview of the NH3 
Sensor Strategy

• Model-based state estimator
• Full state feedback, nonlinear control law

Both the estimator and 
the control strategy are 
based on a 4-state, 
reduced order model.

Control System
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Simulation Based Analysis 
of NH3 Sensors

• NH3 concentration from the FTIR analyzer is assumed as the NH3 sensor signal.

• NH3 sensor is assumed to have no cross-sensitivity towards NO and NO2 species as 
reported in the literature.

• Using the 4 state model, the linear system based on NH3 sensor feedback is observable and 
controllable under all engine operating conditions.

observable and controllable. This indicates that, based on NH3 measurement down-

stream of the SCR catalyst, a model based estimator can be designed to estimate the

unmeasurable state θ in the catalyst.

5.3.2 Model Based Estimator Design Based on NH3 Sensor

Feedback

A linear estimator of the form shown in Eq. 5.10 is used.

"̇xest = "f("xest, u, t) + "L(CNH3 − CNH3,est) (5.10)

where "xest = [CNO,est CNO2,est θest CNH3,est]T denotes the estimated states, "f indicates

the nonlinear reduced order model given in Eq. 4.6, "L is the estimator gain vector

and CNH3 is the measured NH3 sensor reading. In this work, the NH3 sensor reading

is assumed to be the NH3 concentration measured by FTIR analyzer. "L must be

chosen such that the estimator is stable. Since, the linear portion of the nonlinear

model is stable, this is possible. The estimator gains are tuned in the simulation

and are obtained as "L = [−5; −5; −1; −5]T . With these gains, the error in the true

and estimated states are found. Test data from the test shown in Figures 3.6 and

Figure 3.8 are used as input to tune the estimator gains. The percentage absolute

error between the true states and estimated states for all the states goes to 0.03%

within t = 1.2 secs of simulation time. This indicates that the estimator gains used
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A model estimator of the form is designed.

yield a faster convergence to the true states. Figure 5.17 shows the convergence of

true and estimated states in NO and NO2 concentrations, followed by Figure 5.18
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Figure 5.17: Convergence of true and estimated NO and NO2 states.

which shows the estimator convergence in θ and NH3 concentration.

5.3.3 Model Based Validation of NH3 Sensor Model

An estimator is designed based on the two catalyst model in conjunction with the

NH3 sensor model. The NH3 sensor is assumed not to have any cross-sensitivity

towards NO and NO2 species. Here, the NH3 concentration from the FTIR analyzer

is assumed to be the NH3 sensor signal. The NOx sensor model given in Eq. 5.1 is
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Figure 5.18: Convergence of true and estimated θ and NH3 states.

slightly modified to obtain the NH3 sensor model and is shown in Eq. 5.11.

S1 = A3(α)CNH3 (5.11)

Only a single state as shown in Subsection 5.2.1 is considered in the two catalyst model

and the NO, NO2 and NH3 concentrations are calculated as steady state expressions.

A linear estimator for the single state in the two catalyst model is shown in Eq. 5.12.

θ̇est = #f(CNO, CNO2 , θest, CNH3 , CNO,in, CNO2,in, CNH3,in) + #L(CNH3,meas − CNH3,est)

(5.12)
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The time constants associated with the species concentrations 
(                      ) in the 4 state model are of the order of magnitude of 
micro-seconds and therefore for real time control strategy 
implementation, the 4 state model has been reduced to a single state model 
by solving (                    ) as steady state expressions.ĊNO , ĊNO2

, ĊNH3

CNO, CNO2
and CNH3

Solving for                     results in a quadratic equation in        written asĊNO and ĊNO2

aC
2

NO2
+ bCNO2

+ c = 0 where

a = k1ΩθQ̄ + k1k3Ω
2θ2

b = Q̄2 +k2ΩθQ̄CO2
+k1ΩθQ̄CNO,in +k3ΩθQ̄+k2k3Ω

2θ2CO2
−k1ΩθQ̄CNO2,in and

c = −Q̄2CNO2,in − k2ΩθQ̄CNO2,inCO2

which is solved to obtain CNO2

CNO is then solved by using the expression

CNO2

CNO =
Q̄CNO,in

Q̄ + k1ΩθCNO2
+ k2ΩθCO2

Single State Model for 
Real-time 

Implementation
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CNH3
is solved by in steady state by setting ĊNH3

= 0

CNH3
=

Q̄CNH3,in + k6Ωθ

k5(1 − θ)Ω + Q̄

The only state in the single state model is the ammonia storage given by

θ̇ = −(k6 +k4)θ+k5CNH3
−k1CNOCNO2

θ−k2CNOCO2
θ−k3CNO2

θ−k5θCNH3

which is a function of CNO, CNO2
and CNH3

A linear state estimator for the single state model based on NOx 
sensor feedback is then written as 

θ̇est = "f(CNO, CNO2
, θ, CNH3

, CNO,in, CNO2,in, CNH3,in)+"L(CNOx,meas−CNOx,est)

Here CNOx,meas is the signal from the downstream        sensorNOx

Single State Estimator 
Design with NOx Sensor 

Model
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Figure 5.15: Test and estimated NOx sensor signals comparison using test
1B as input

the following chapter. Though the state-of-the-art NOx sensor can be compensated

for NH3 cross-sensitivity using an approximate NOx sensor model, with the inherent

complexity in the urea-SCR aftertreatment system such as sampling delays and ex-

perimental errors, an NH3 sensor being tested for SCR control applications might be

a potential alternative. A simulation based analysis of the NH3 sensor is explained in

the following section.
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Figure 5.16: Test and estimated NOx sensor signals comparison using test
3 as input

5.3 Simulation Based Analysis of NH3 Sensors for

SCR Control Applications

NH3 sensors, relatively new to automotive applications, have been researched in Eu-

rope for NH3 feedback to meet the NOx emission regulations [79]. Wingbrant et al.

in [80] developed a MISiC-FET (Metal Insulated Silicon Carbide Field Effect Tran-

sistor) for detecting NH3 in SCR systems. The authors concluded that the presence

of water vapor was shown to have the largest effect on the sensors at low levels.

With the limitation of NOx sensors for closed loop SCR control application because

136

Using two catalysts in series, the estimator 
with the NOx sensor model is validated 
against the measured NOx sensor signal.
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Single State Estimator 
Validation with NH3 

Sensor Model

Using two catalysts in series, the estimator 
with the NH3 sensor model is validated 
against the measured NH3 sensor signal.

The NH3 sensor model is formulated as a 
function of alpha. 
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slightly modified to obtain the NH3 sensor model and is shown in Eq. 5.11.

S1 = A3(α)CNH3 (5.11)

Only a single state as shown in Subsection 5.2.1 is considered in the two catalyst model

and the NO, NO2 and NH3 concentrations are calculated as steady state expressions.

A linear estimator for the single state in the two catalyst model is shown in Eq. 5.12.

θ̇est = #f(CNO, CNO2 , θest, CNH3 , CNO,in, CNO2,in, CNH3,in) + #L(CNH3,meas − CNH3,est)

(5.12)
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A linear state estimator for the single state model 
based on NH3 sensor feedback is then written as 
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slightly modified to obtain the NH3 sensor model and is shown in Eq. 5.11.

S1 = A3(α)CNH3 (5.11)

Only a single state as shown in Subsection 5.2.1 is considered in the two catalyst model

and the NO, NO2 and NH3 concentrations are calculated as steady state expressions.

A linear estimator for the single state in the two catalyst model is shown in Eq. 5.12.

θ̇est = #f(CNO, CNO2 , θest, CNH3 , CNO,in, CNO2,in, CNH3,in) + #L(CNH3,meas − CNH3,est)

(5.12)
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CNO, CNO2 , CNH3 are the steady state concentrations of the species calculated in equa-

tions Eq. 5.3, Eq. 5.2 and Eq. 5.4 respectively. CNH3,meas is the measured NH3 from

the NH3 sensor (FTIR concentration), CNH3,est is the estimated NH3 concentration

calculated from the estimator with the NH3 sensor model shown in Eq. 5.11. !L is the

scalar estimator gain tuned in simulation.

The estimator with the NH3 sensor model is tested in simulation and the concentra-

tions are compared using two different sets of data. Test 1B is used to compare the

NH3 sensor concentrations from the test and estimator as shown in Figure 5.19. The
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Figure 5.19: Test and estimated NH3 sensor signals comparison using test
1B as input

tuned estimator gain is 1E-3. Similarly, test 3 is used to compare the NH3 sensor
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concentrations from the test and the estimator shown in Figure 5.20. The tuned esti-
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Figure 5.20: Test and estimated NH3 sensor signals comparison using test
3 as input

mator based on NH3 sensor feedback is then used in conjunction with the closed-loop

control strategy and the 1 state reduced order model is used to generate the urea in-

jection rate which is discussed in the following chapter. The generated urea injection

rate from the NH3 sensor based closed loop control strategy is then compared to the

injection rate from the NOx sensor based control strategy and analyzed.
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Control System 
Comparison Based on 

Sensor Models

The control systems with the 
NOx and NH3 sensor models 
are compared.

Performance metrics in NOx 
index, urea index, urea usage and 
NH3 slip are defined and 
compared.is shown in Table 5.2. From the Table 5.2, it is observed that the control strategy

Table 5.2: Performance comparison in NOx index, Urea index, urea injected
and total NH3 slip using NOx sensor and NH3 sensor based control strategies
during the test shown in Figure 3.8

Strategy NOx Index Urea Index Urea Total NH3 Slip
Units gm of NOx reacted

gm of urea injected
gm of urea reacted
gm of urea injected kg kg

NOx sensor based 0.42 0.27 0.99 0.0289
NH3 sensor based 0.40 0.26 1.04 0.0315

% Change 4.7 ↑ 4.7 ↑ 5.3 ↓ 9.1 ↓

based on the NOx sensor model shows a better performance than the control strategy

based on NH3 sensor model in all the performance metrics. Though the percent

improvement is approximately 5% in NOx index, urea index and urea usage, the

control strategy based on NOx sensor model controls the NH3 slip out of SCR2 better

than the NH3 sensor.

Table 5.3 shows the comparison in NOx index, urea index, urea usage and NH3 slip

between the control strategies and the test data. The NOx sensor based control

Table 5.3: Performance comparison in NOx index, Urea index, urea injected
and total NH3 slip using the control strategies and the test 1B data

Strategy NOx Index Urea Index Urea Total NH3 Slip
Units gm of NOx reacted

gm of urea injected
gm of urea reacted
gm of urea injected kg kg

NOx sensor based 0.42 0.27 0.99 0.0289
NH3 sensor based 0.40 0.26 1.04 0.0315

Test data 0.43 0.28 1.01 0.0162

strategy uses less urea while obtaining approximately similar NOx index and urea

index which makes it a better candidate than the NH3 sensor based control strategy
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Control Strategy Comparison Using Test Data

whose indices are slightly less. Both the sensor based control strategies exhibit higher

NH3 slip than the test data. This might be because of approximating the dependency

of α on the NH3 concentration in the NOx sensor signal in a linear fashion. An

interesting task for the future will be to study if the NH3 concentration in the NOx

sensor signal is dependent on α in a polynomial formulation.

The concentrations of NO, NO2 and NH3 species from both the sensor based control

strategies are compared to the concentrations recorded by FTIR at SCR2 out in Fig-

ure 5.21. Both the strategies show similar trends in NO, NO2 and NH3 concentrations
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Figure 5.21: Comparison of NO, NO2 and NH3 species concentrations from
the control strategies based on sensor models and the test data.

except at high temperatures, approximately between 200min < Time < 250min,
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Control System 
Comparison Based on 

Sensor Models

when an increase in exhaust gas temperature results in slightly high NH3 slip and

thus a discrepancy in NO output. Figure 5.22 shows a comparison in urea injection

rate from the closed-loop controllers and from the test data. The NH3 storage curves

from both the control strategies are also shown in the figure.
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Figure 5.22: Comparison of urea injection rates and NH3 storage curves
from the control strategies based on sensor models.

From Figure 5.21 and Figure 5.22, it is observed that though the state-of-the-art

NOx sensor has cross-sensitivity towards NH3, the control strategy based on a simple

NOx sensor model shows a better catalyst performance than the strategy based on

an assumed NH3 sensor model. One important observation from this simulation

based analysis of NH3 sensor is that the sensor can be used for model based control
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is shown in Table 5.2. From the Table 5.2, it is observed that the control strategy

Table 5.2: Performance comparison in NOx index, Urea index, urea injected
and total NH3 slip using NOx sensor and NH3 sensor based control strategies
during the test shown in Figure 3.8

Strategy NOx Index Urea Index Urea Total NH3 Slip
Units gm of NOx reacted

gm of urea injected
gm of urea reacted
gm of urea injected kg kg

NOx sensor based 0.42 0.27 0.99 0.0289
NH3 sensor based 0.40 0.26 1.04 0.0315

% Change 4.7 ↑ 4.7 ↑ 5.3 ↓ 9.1 ↓

based on the NOx sensor model shows a better performance than the control strategy

based on NH3 sensor model in all the performance metrics. Though the percent

improvement is approximately 5% in NOx index, urea index and urea usage, the

control strategy based on NOx sensor model controls the NH3 slip out of SCR2 better

than the NH3 sensor.

Table 5.3 shows the comparison in NOx index, urea index, urea usage and NH3 slip

between the control strategies and the test data. The NOx sensor based control

Table 5.3: Performance comparison in NOx index, Urea index, urea injected
and total NH3 slip using the control strategies and the test 1B data

Strategy NOx Index Urea Index Urea Total NH3 Slip
Units gm of NOx reacted

gm of urea injected
gm of urea reacted
gm of urea injected kg kg

NOx sensor based 0.42 0.27 0.99 0.0289
NH3 sensor based 0.40 0.26 1.04 0.0315

Test data 0.43 0.28 1.01 0.0162

strategy uses less urea while obtaining approximately similar NOx index and urea

index which makes it a better candidate than the NH3 sensor based control strategy
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Results - Control System 
Performance with Sensor 

Models

30

• A simple NOx sensor model based on experimental data is developed and validated 
using various sets of test data. The sensor model is then tested in simulation using a 
single state model by considering two catalysts in series.

• An NH3 sensor assuming no cross-sensitivity towards NO and NO2 species is 
analyzed using linear systems theory for observability and controllability and analysis 
shows that the system based on NH3 sensor feedback is controllable and 
observable (proof not shown for conciseness, See reference)

• An interesting observation from the analysis is that the NH3 storage and urea 
injection flow rate from the strategy based on NH3 sensor match within 2-5% of 
those obtained from a strategy based on NOx sensor.

• One important conclusion from the analysis is that the NH3 sensor, from its 
simulation based performance, can be regarded as a potential candidate for SCR 
control applications in the absence of an accurate NOx sensor model.

• One interesting area for future research will be enhancement of sensor model 
performance at high urea injection rates and understanding the impact of other 
system variables on the sensor signal scattering and delays.
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