

CLEERS Workshop 2012, Dearborn, April 30th, 2012

Development and validation of a chemico-physically consistent mathematical model of dual-layer Ammonia Slip Catalysts

#### Isabella Nova,

M. Colombo, E. Tronconi

Laboratory

of Catalysis and

Catalytic Processes

L.Zimmermann, V.Schmeisser, B.Bandl-Konrad,

DAIMLER



#### **Dual Layer ASCs concept**

*What is the NH*<sub>3</sub> *slip:* undesired release of unreacted NH<sub>3</sub> downstream of the SCR converters.

#### **Possible causes of NH<sub>3</sub> slip:**

- incomplete NOx conversion
- overdosing of reducing agent to favour NOx conversion
- desorption of stored NH<sub>3</sub> during fast heat-up transients

*How to avoid it?* Catalytic device downstream of the SCR converter → ASC



#### ASC ZONE → dual layer: SCR + PGM

#### Why a Dual Layer ASC configuration?



**Scheuer** et al., Top.Catal. 52 (2009) 847 **Scheuer** et al., App.Catal. B: Environmental 111– 112 (2012) 445

Isabella Nova

## **Goal/Outline**

### Development of a chemico-physically consistent mathematical model of a dual-layer ASC monolith



# **Approach & Methods**

Isabella Nova

#### **Approach & Methods**



#### **Microreactor scale**







#### Lab-scale tests in microreactor afford:

- no diffusional limitations
- isothermal operation
- N-balances
- fast transients



#### Model of monolithic SCR converters:

- extruded/washcoated monoliths → the 1D+1D model accounts also for intraporous diffusion within the catalytic layers.
- modeling of one representative channel.
- 1D mass and enthalpy balances for gas and chatterjee et al., SAE technical paper 2005-01-0965 chatterjee et al., SAE technical paper 2006-01-0468

Fe-zeolite washcoated monoliths PGM washcoated monoliths ASC dual layer washcotaed monoliths



## **Goal/Outline**

### Development of a chemico-physically consistent mathematical model of a dual-layer ASC monolith

#### **1. Kinetic study and model validation of the SCR component**



- Experimental study over powdered catalyst (chemical regime)
- Identification of the reaction scheme
- Development of a global kinetic model
- Estimation of the kinetic parameters
- Model validation at the monolith scale

#### **Kinetic scheme**

| Kinetic investigation analyzing the<br>effect of operative conditions<br>(temperature, species concentrations,<br>GHSV, steady-state vs. transients) on:<br><u>NH<sub>3</sub></u><br><u>NH<sub>3</sub>/O<sub>2</sub></u> | 1. $NH_3$ adsorption/desorption $NH_3 \leftrightarrow NH_3^*$<br>2. $NH_3$ oxidation to $N_2$<br>$2NH_3^* + 3/2O_2 \rightarrow N_2 + 3H_2O$<br>3. $NH_3$ oxidation to NO<br>$2NH_3^* + 5/2O_2 \rightarrow 2NO + 3H_2O$                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{NO/O_2 - NO_2/O_2}{NH_3/NO/O_2}$ $\frac{NH_3/NO_2/O_2}{NH_3/NO_2/O_2}$                                                                                                                                            | 4. NO oxidation to NO <sub>2</sub> $NO + 1/2O_2 \rightarrow NO_2$<br>5. Standard SCR<br>$NH_3^* + NO + 1/4O_2 \rightarrow N_2 + 3/2H_2O$<br>6. High-T Standard SCR<br>$NH_3 + NO + 1/4O_2 \rightarrow N_2 + 3/2H_2O$                                                                                                                                                                                                                                                                                                                 |
| $NH_{3}/NO-NO_{2}/O_{2}$ $N_{2}O/NO-NO_{2}$ $N_{2}O/NH_{3}$                                                                                                                                                              | 7. Ammonium nitrate formation<br>$2NH_3^* + 2NO_2 \rightarrow NH_4NO_3^* + N_2 + H_2O$<br>8. Ammonium nitrate sublimation<br>$NH_4NO_3^* \rightarrow (NH_3^*) + (HNO_3) \rightarrow NH_4NO_{3(s)}$<br>9. N <sub>2</sub> O formation<br>$2NH_3^* + 2NO_2 \rightarrow N_2 + N_2O + 3H_2O$<br>10. NO <sub>2</sub> -SCR $\rightarrow N_2$<br>$8NH_3^* + 6NO_2 \rightarrow 7N_2 + 12H_2O$<br>11. Fast SCR<br>$2NH_3^* + NO + NO_2 \rightarrow 2N_2 + 3H_2O$<br>12. N <sub>2</sub> O reduction by NO<br>$N_2O + NO \rightarrow N_2 + NO_2$ |
| Colombo et al., App. Cat. B: Environmental, 111-112 (2012) 106                                                                                                                                                           | <b>13.</b> $N_2O$ -SCR $2NH_3^* + 3N_2O \rightarrow 2N_2 + 3H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Isabella Nova                                                                                                                                                                                                            | POLITECNICO DI MILANO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### **Kinetic scheme**



Specific rate for Standard SCR hysteresis effects and kinetic scheme accounting also for N<sub>2</sub>O decomposition /reactivity

Colombo et al., App. Cat. B: Environmental, 111-112 (2012) 106

Isabella Nova

 $NH_{4}NO_{3} \rightarrow (NH_{3}^{*}) + (HNO_{3}) \rightarrow NH_{4}NO_{3(s)}$ 9. N<sub>2</sub>O formation  $2NH_{3}^{*} + 2NO_{2} \rightarrow N_{2} + N_{2}O + 3H_{2}O$ 10. NO<sub>2</sub>-SCR  $\rightarrow$  N<sub>2</sub> 8NH\_{3}^{\*} + 6NO\_{2}  $\rightarrow 7N_{2} + 12H_{2}O$ 11. Fast SCR 2NH\_{3}^{\*} + NO + NO\_{2}  $\rightarrow 2N_{2} + 3H_{2}O$ 12. N<sub>2</sub>O reduction by NO N<sub>2</sub>O + NO  $\rightarrow N_{2} + NO_{2}$ 13. N<sub>2</sub>O-SCR 2NH<sub>3</sub> + 3N<sub>2</sub>O  $\rightarrow 2N_{2} + 3H_{2}O$ 

SCR catalyst: kinetics derivation over powders

#### Hysteresis effect with NH<sub>3</sub> surface coverage



#### NO-NO<sub>2</sub>/NH<sub>3</sub>-O<sub>2</sub> reacting system: steady state data



#### NO-NO<sub>2</sub>-N<sub>2</sub>O/NH<sub>3</sub>-O<sub>2</sub> reacting system: steady state data



## $N_2O$ decomposition to $N_2$ in the presence of $NO_x$ and reaction with ammonia above 300°C captured by the model.



SCR catalyst: model validation over test bench full scale monoliths

#### Validation maps



Deviation in NOx conversions simulations vs. experimental are within ±5% error in the whole T & mass flow rate fields.



# Model prediction under realistic transient conditions in good agreement with the experimental behavior.

### **Goal/Outline**

### Development of a chemico-physically consistent mathematical model of a dual-layer ASC monolith

1. Kinetic study and model validation of the SCR component



## 2. Kinetic study and model validation of the PGM component



- Experimental study over powdered catalyst
- Identification of the reaction scheme
- Development of a global kinetic model
- Estimation of the kinetic parameters
- Model validation at the monolith scale

#### **Kinetic modeling of PGM component**



(temperature, species concentrations, GHSV, steady-state vs. transients) **on**:



Global kinetic model of NH<sub>3</sub> slip PGM catalysts accounting also for NO<sub>2</sub> reactivity and inhibition effects

 $NH_3 \leftrightarrow NH_3^*$ NH<sub>3</sub> adsorption/desorption 1. NH<sub>3</sub> oxidation to N<sub>2</sub> (INHIBITED BY NO<sub>2</sub>) 2.  $2NH_2^* + 3/2O_2 \rightarrow N_2 + 3H_2O$ NH<sub>3</sub> oxidation to NO (INHIBITED BY NO<sub>2</sub>) 3.  $2NH_3^* + 5/2O_2 \rightarrow 2NO + 3H_2O$ NO oxidation to NO<sub>2</sub> (INHIBITED BY NO<sub>2</sub>) 4.  $NO + 1/2O_2 \rightarrow NO_2$ Unselective Standard SCR (INHIBITED BY NO<sub>2</sub>) 5.  $NH_{3}^{*} + NO + 3/4O_{2} \rightarrow N_{2}O + 3/2H_{2}O$ N<sub>2</sub>O Formation **6**.  $2NH_3^* + 2NO_2 \rightarrow N_2 + N_2O + 3H_2O$  $8NH_3^* + 6NO_2 \rightarrow 7N_2 + 12H_2O$ NO<sub>2</sub>-SCR 7.

Colombo et al., manuscript in preparation

PGM catalyst: kinetics derivation over powders



#### NH<sub>3</sub>/O<sub>2</sub> reacting system



Steep reaction light-off between 200-225°C

Modest production of nitrogen, with significant formation of  $N_2O$ between 200-300°C, and  $NO_x$ at T>300°C

#### **NH<sub>3</sub> oxidation**

 $2 \text{ NH}_3 + 3/2 \text{ O}_2 \rightarrow \text{N}_2 + 3 \text{ H}_2\text{O}$ 

 $2 \text{ NH}_3 + 5/2 \text{ O}_2 \rightarrow 2 \text{ NO} + 3 \text{ H}_2\text{O}$ 

#### **NO oxidation**

 $NO + \frac{1}{2}O_2 \rightarrow NO_2$ 

<u>NH<sub>3</sub>/NO/O<sub>2</sub> reactivity</u>

 $2\mathsf{NH}_3 + 2\mathsf{NO} + 3/2\mathsf{O}_2 \rightarrow 2\mathsf{N}_2\mathsf{O} + 3\mathsf{H}_2\mathsf{O}$ 

#### NH<sub>3</sub>/O<sub>2</sub> reacting system



Steep reaction light-off between 200-225°C

Modest production of nitrogen, with significant formation of  $N_2O$ between 200-300°C, and  $NO_x$ at T>300°C

#### **NH<sub>3</sub> oxidation**

 $2 \text{ NH}_3 + 3/2 \text{ O}_2 \rightarrow \text{N}_2 + 3 \text{ H}_2\text{O}$ 

 $2 \text{ NH}_3 + 5/2 \text{ O}_2 \rightarrow 2 \text{ NO} + 3 \text{ H}_2\text{O}$ 

#### **NO oxidation**

 $NO + \frac{1}{2}O_2 \rightarrow NO_2$ 

<u>NH<sub>3</sub>/NO/O<sub>2</sub> reactivity</u>

 $2\mathsf{NH}_3 + 2\mathsf{NO} + 3/2\mathsf{O}_2 \rightarrow 2\mathsf{N}_2\mathsf{O} + 3\mathsf{H}_2\mathsf{O}$ 

#### NH<sub>3</sub>/O<sub>2</sub> reacting system: effect of NH<sub>3</sub> concentration



#### NH<sub>3</sub>/NO/O<sub>2</sub> reacting system: effect of NO concentration





<u>NH<sub>3</sub>/NO<sub>2</sub> reactivity</u>

$$2NH_3 + 2NO_2 \rightarrow N_2 + N_2O + 3H_2O$$
$$2NH_3 + 3NO_2 \rightarrow 7/2N_2 + 6H_2O$$

Significant reduction of  $NH_3$ oxidation activity below 300°C in presence of  $NO_2$  taken into account by the model.



## PGM catalyst: model validation over lab-scale monoliths



Model predictions in good agreement with the experimental behavior.



Thin lines= experimental Thick lines = simulations

Isabella Nova

#### NH<sub>3</sub>/NO/O<sub>2</sub> reacting system



Model predictions in good agreement with the experimental behavior.



Thin lines= experimental Thick lines = simulations

Isabella Nova

### **Goal/Outline**

### Development of a chemico-physically consistent mathematical model of a dual-layer ASC monolith

1. Kinetic study and model validation of the SCR component

2. Kinetic study and model validation of the PGM component



3. Kinetic study of the combined SCR+ PGM components



#### **Reactor configurations of the combined SCR+ PGM components**



#### NH<sub>3</sub> / O<sub>2</sub> reacting system



Isabella Nova

#### NH<sub>3</sub> / O<sub>2</sub> reacting system





## **Goal/Outline**

## Development of a chemico-physically consistent mathematical model of a dual-layer ASC monolith



#### **Modeling of dual-layer NH<sub>3</sub> slip monolith catalyst**

#### **EXPECTED CONCENTRATION PROFILES**



Is it necessary to model reaction/diffusion in both catalytic layers?

Isabella Nova

## Modelling of PGM layer

i.

#### **PGM layer: effect of washcoat load**



Simulated conditions:  $NH_3 = 300 \text{ ppm}$   $O_2 = 5\%$  $GHSV = 300'000 \text{ h}^{-1}$ 

Colombo et al., Chem. Eng. Sci. 75 (2012) 75

Isabella Nova

#### **PGM layer: effect of washcoat load**

T=300°C,

#### z = 5 mm from monolith entrance



## Only the first 15-20µm of PGM catalyst are effectively working

**Simulated conditions:** NH<sub>3</sub> = 300 ppm O<sub>2</sub>= 5% GHSV = 300'000 h<sup>-1</sup>

Colombo et al., Chem. Eng. Sci. 75 (2012) 75

## **Modelling of SCR layer**

i.

#### SCR layer: effect of PGM addition

#### NO concentration profiles in NH<sub>3</sub>/NO/O<sub>2</sub> reacting system





Simulated conditions: NH<sub>3</sub>=NO=300 ppm  $O_2$ = 5% GHSV = 300'000 h<sup>-1</sup>

Colombo et al., Chem. Eng. Sci. 75 (2012) 75

Isabella Nova

#### SCR layer: effect of PGM addition

#### NO concentration profiles in NH<sub>3</sub>/NO/O<sub>2</sub> reacting system



Simulated conditions: NH<sub>3</sub>=NO=300 ppm  $O_2$ = 5% GHSV = 300'000 h<sup>-1</sup>

Colombo et al., Chem. Eng. Sci. 75 (2012) 75

Isabella Nova

**Modeling of reaction and diffusion** 



#### Layer+Surface Model (LSM)



Isabella Nova

## **Goal/Outline**

### Development of a chemico-physically consistent mathematical model of a dual-layer ASC monolith



#### Model validation against lab-scale ASC monolith data



Model predictions under realistic transient conditions in good agreement with the experimental behavior.

#### Model validation against DOE data over the full scale ASC monolith

DOE data: T=180-500°C, SV=30-300 k/h, NO<sub>2</sub>/NO<sub>x</sub>=0-1, α=NH<sub>3</sub>/NO<sub>x</sub>=0-20



#### Model validation against DOE data over the full scale ASC monolith

DOE data: T=180-500°C, SV=30-300 k/h, NO<sub>2</sub>/NO<sub>x</sub>=0-1, α=NH<sub>3</sub>/NO<sub>x</sub>=0-20



## **Goal/Outline**

### Development of a chemico-physically consistent mathematical model of a dual-layer ASC monolith



#### **Goal/Outline**

Development of a chemico-physically consistent mathematical model of a dual-layer ASC monolith

The model is now used in the automotive development process at DAIMLER to simulate the behaviour of ASC catalysts...e.g. to compare Fe- and Cu-based ASC catalysts, to optimize the ASC perfomances...



#### Fe- vs. Cu-zeolite based dual–layer NH<sub>3</sub> slip catalysts

Effect of SCR component on ASC activity and selectivity



Cu-zeolite exhibits similar  $NH_3$  oxidation activity and lower selectivity to NOx and to  $N_2O$  in the whole T-range.

Simulated conditions:  $NH_3 = 500 \text{ ppm}$   $O_2 = H_2O = 8\%$  $GHSV = 100'000 \text{ h}^{-1}$ 

#### **Optimization of ASC performance**

#### Evaluation of NH<sub>3</sub> oxidation activity and selectivity for different SCR+PGM configurations



## **Acknowledgements**

M. Colombo E. Tronconi Catalytic Processes LCCP

## V.Schmeisser L.Zimmermann B.Bandl-Konrad

Johnson Matthey for providing the catalysts for this study







## Thank you for your attention!



Raffaello, The school of Athens, 1509, Apostolic Palace, Roma COORCECCO CONCECCO

Politecnico di Milano

Isabella Nova

POLITECNICO DI MILANO

Laboratory

Catalytic Processes

of Catalysis and