Louise Olsson

The beneficial effect of SO₂ on platinum migration and NO oxidation over diesel

oxidation catalysts

Louise Olsson

Chemical Engineering Competence Centre for Catalysis Chalmers University of Technology

Chemical Engineering

Outline

- NO oxidation on Pt/Al₂O₃
- Platinum oxide formation
- Effect of support on NO oxidation
- Effect of water on NO oxidation
- Effect of propene on NO oxidation
- Beneficial effects of SO₂ pre-treatment on NO oxidation
- Conclusions
- Acknowledgements

NO oxidation on Pt/Al₂O₃

L. Olsson, B. Westerberg, H. Persson, E. Fridell, M. Skoglundh, B. Andersson, J. Phys. Chem. B, 103 (1999) 10433

Chemical Engineering

NO oxidation over Pt/Al₂O₃

Pretreatment:

0.1% H_2 /Ar at 400°C for 10 min with, followed by 10 min Ar

Feed mixture:

630ppm NO and $8 \% O_2$, for 36 h.

Temperature: 250°C

SV: 39 000 h⁻¹

L. Olsson and H. Karlsson, Catalysis Today 147S (2009) S290.

Chemical Engineering

Louise Olsson

Removal of platinum oxides

L. Olsson and H. Karlsson, Catalysis Today 147S (2009) S290.

Chemical Engineering

XPS spectra of Pt/BaO/Al₂O₃

L. Olsson and E. Fridell, J. of Catalysis 2002, 210, 340.

Chemical Engineering

XPS Pt4f spectra for different pre-treatments

a) Pt/Al₂O₃, H₂
b) Pt/BaO/Al₂O₃, H₂
c) Pt/Al₂O₃, NO₂
d) Pt/BaO/Al₂O₃, NO₂
e) Pt/Al₂O₃, O₂
f) Pt/BaO/Al₂O₃, O₂

L. Olsson and E. Fridell, J. of Catalysis 2002, 210, 340.

Chemical Engineering

XPS Pt4f spectra deconvolution

L. Olsson and E. Fridell, J. of Catalysis 2002, 210, 340.

Chemical Engineering

Effect of support on NO oxidation

Catalyst	Al ₂ O ₃ or TiO ₂ (mg)	V ₂ O ₅ (mg)	Pt (mg)	BET (m ² /g monolith)	Dispersion CO/Pt
Pt/Al_2O_3	827	-	15.4	133	0.29; 0.30; 0.30
Pt/TiO ₂	857	-	17.5	77	0.08; 0.07; 0.07; 0.08
Pt/V ₂ O ₅ /TiO ₂	807	40	17.6	68	-

L. Olsson, M. Abul-Milh, H. Karlsson, E. Jobson, P. Thormählen and A. Hinz, *Topics in Catalysis 30/31* (2004) 85.

Chemical Engineering

Effect of support on NO oxidation

Feed mixture: 630ppm NO and 8 % O₂ Temperature: 200°C SV= 39 000 h⁻¹

Competence Centre for Catalysis

Effect of support on NO oxidation - Influence of water at 200°C

1.4

0

CHALMERS

0.2

0.4

0.6

0.8

Time (h)

1.0

1.2

CHALMERS

Effect of support on NO oxidation - Influence of C₃H₆ at 200°C

Louise Olsson

Experimental conditions for sulphur influence of NO oxidation on Pt/Al₂O₃

- 1. Degreening: 2% H_2 for 30 min at 400°C, 45 min at 650°C in Ar
- 2. Measure platinum dispersion with CO TPD
- 3. NO oxidation exp.
 - (i): 1% H₂/Ar at 400°C for 30 min (pretreatment)
 - (ii) 10 min Ar at 400°C
 - (iii) 630 ppmNO+8%O₂ for 35 min at 40°C
 - (iv) Temperature ramp with a rate of 5°C/min up to 400°C
- 4. Long NO oxidation+SO₂ exp.
 - (i): 1% H₂/Ar at 400°C for 30 min (pretreatment)
 - (ii) 10 min Ar at 400°C, cool to 250°C
 - (iii) 250°C: 630ppmNO+8%O₂ for 30 min at 250°C
 - (iv) 250°C: 630ppmNO+8%O2+30ppm SO₂ for 22h
 - (v) 250°C: 630ppmNO+8%O2 for 30 min
- 5. NO oxidation exp.
- 6. Measure platinum dispersion with CO TPD

Influence of SO₂ on NO oxidation over Pt/Al₂O₃ at 250°C

Feed mixture:

630ppm NO and 8 % O_2 , for 23 h.

After 30 min was 30 ppm SO_2 added and it was removed after 22.5h.

Temperature: 250°C

SV= 39 000 h⁻¹

L. Olsson and H. Karlsson, Catalysis Today 147S (2009) S290.

Chemical Engineering

Influence of SO₂ on NO oxidation on Pt/Al₂O₃

L. Olsson and H. Karlsson, Catalysis Today 147S (2009) S290.

Chemical Engineering

Influence of SO₂ on NO oxidation over Pt/Al₂O₃ at 200°C

Feed mixture:

630ppm NO and $8 \% O_2$, for 23 h.

After 30 min was 30 ppm SO_2 added and it was removed after 22.5h.

Temperature: 200°C

SV= 39 000 h⁻¹

L. Olsson and H. Karlsson, Catalysis Today 147S (2009) S290.

Chemical Engineering

Influence of SO₂ on NO oxidation on Pt/Al₂O₃

L. Olsson and H. Karlsson, Catalysis Today 147S (2009) S290.

Chemical Engineering

Conclusions

- NO oxidation decreases with time over Pt/Al₂O₃, due to formation of platinum oxides
- XPS showed platinum oxide formation
- Increase platinum oxide formation when barium is present, due to that it is alkaline
- The addition of vanadia to Pt/TiO₂, made the catalyst more stable. Although with a lower activity. Vanadia is acidic.
- SO₂ initially deactivates the NO oxidation on Pt/Al₂O₃
- After about 2h with $NO+O_2+SO_2$, the activity slowly increases
- After 22h of NO+O₂+SO₂ exposure at 250°C, the catalyst was regenerated and NO oxidation activity increased significantly.
- The Pt dispersion had decreased from 12 to 3.5%
- SO₂ induces Pt sintering already at 200 and 250°C

Acknowledgements

- Hanna Karlsson and Xavier Auvray at KCK, Chalmers.
- Swedish Science Council
- Swedish Strategic Foundation
- Swedish Energy Agency
- Competence Centre for Catalysis, which is financially supported by Chalmers University and the Swedish Energy Agency and the member companies: AB Volvo, Volvo Car Corporation, Scania CV AB, SAAB Powertrain Sweden AB, Haldor Topsoe A/S and ECAPS.

