Effect of High Temperature Lean/Rich Thermal Aging on NO_x Storage and Reduction over a Fully-Formulated LNT

Nathan A. Ottinger and Ke Nguyen

University of Tennessee

B. G. Bunting, T. J. Toops and Jane Howe

Oak Ridge National Laboratory

12th CLEERS Workshop 30th April, 2009 Dearborn, MI

Objective

- Determine the effect of thermal aging on LNT's components during NO_x storage and reduction
 - How is NO_x storage capacity affected by aging?
 - How does PGM dispersion affect NO oxidation and NO_x reduction?

Thermal-Aging with Exotherm in a Furnace

	Lean (130s)	Rich (50s)
NO _x	300 ppm	300 ppm
CO ₂	5%	5.00%
со	0	5.10%
H ₂	0	3.25%
0 ₂	11%	4.00%
H ₂ 0	4.2%	4.20%
N ₂	balance	balance

AK RIDGE National Laboratory

- Low Temperature Ba-only LNT (fully-formulated)
- The center of the catalyst reaches a nominal aging temperature of ~900°C
- The front section of the catalyst experiences higher aging temperature

Experimental Apparatus

Micro-Reactor

- NO_x Storage
- NO Oxidation
- BET Surface
 Area

at FEERC

Bench-Reactor

• NO_x Conversion

at UT Knoxville

<u>DRIFTS</u>

• NO_x Storage

• NO_x TPDs

at FEERC

STEM/EDS

PGM Particle Size

Results: Effect of Aging on NO_x Storage, NO Oxidation, and PGM Activity

Micro-reactor, Bench-Reactor, and STEM

Impact of Thermal Aging on NO_x Storage Capacity is Function of Evaluation Temp.

- Maximum NO_x storage capacity at 300°C
 - Capacity at 400°C is only half of 300°C in fresh LNT
- NO_x capacity decreases at all aging temperatures
 - Largest reduction at highest aging temperature
- Capacities are similar after aging at 900 and 1000°C
 - Storage at 400°C is less affected by aging

Flow Conditions: 1000 ppm NO, 10% O₂, and Ar balance

Normalizing NO_x Storage Capacity to Surface Area Reveals Three Relationships

- 200°C
 - Capacity constant on surface area basis until 1000°C
- 300°C
 - Capacity decreases 36% from 4.8 to 3 μmol NO/m²
- 400°C
 - Capacity increases 31% after 929°C
 - Ba dispersion is either constant or increasing with SA loss

National Laboratory

NO Oxidation is Most Affected at 300°C by Aging

- Max of 58% at 300°C and 20% at 200°C in fresh LNT
- NO oxidation at 200 and 300°C decreases with aging temperature
- Approximately constant at 400°C
 - Equilibrium limited

kinetics are too fast to effect

NO Oxidation Per mol Surface PGM Increases with Aging

- Ten-fold increase in average PGM size after aging at 1000°C
- NO conversion *per mol PGM_s* increases at all evaluation temperatures
 - 19 to 195 µmol NO/s⋅mol PGM_s at 400°C
- Qualitatively illustrated by Olsson et al.
 - L. Olsson, E. Fridell, Journal of Catalysis 210 (2002) 340.

National Laboratory

Rich Phase NO_x Release Reduced After Aging at Evaluation Temp. of 400°C

- Storage Phase
 - NO_x slip increases with aging temperature and number of aging cycles
 - Capacity decreases with aging
- Reduction Phase
 - NO_x excursion decreases with increasing number of aging cycles
 - PGM surface area decreases with aging

GHSV: 30,000 hr⁻¹ Lean (60s): 300ppm NO, 5% CO₂, 5% H₂O, 10% O₂, N₂ bal Rich (5s): 300ppm NO, 5% CO₂, 5% H₂O, 1.13% CO, .68% H₂, N₂ bal

Calculating an Unbiased Turnover Frequency is Complicated by Cycling

 Normalized to NO_x stored in previous lean cycle to account for dependence on surface coverage of rich NO_x release

$$TOF_{pseudo} = \frac{NO_{x} \operatorname{Re} leased_{rich_cycle}}{NO_{x} Stored_{lean_cycle}} * molPGM_{s}$$

Aging Results in Improved Reduction Efficiency

NO_x that is released is reduced more efficiently after aging

Lean (60s): 300 ppm NO, 5% CO_2 , 5% H_2O , 10% O_2 , N_2 bal Rich (5s): 300 ppm NO, 5% CO_2 , 5% H_2O , 1.13% CO, .68% H_2 , N_2 bal

Results: Effect of Aging on Distribution and Stability of NO_x Storage Sites

DRIFTS

DRIFTS Experimental Setup

- NO_x Storage
 - Pretreatment at 500°C in 1% H₂, Ar bal. for 30 min
 - Take background scan in 10%
 O₂, and Ar bal. at storage temperature
 - Store NO_x with 300 ppm NO, 10% O_2 , Ar bal.
- NO_x TPDs
 - Pretreatment at 500°C in 1% H₂, Ar bal. for 30 min
 - Take background scans while cooling from 500 to 200°C in $10\% O_2$, Ar bal.
 - Exposure to 300 ppm NO, 10%
 O₂, Ar bal. at 200°C for 1 hr
 - TPD in Ar

DRIFTS Peak Assignments

- 1220 cm⁻¹ Ba(NO₂)₂
 - D. H. Kim, J. H. Kwak, J. Szanyi, S. D. Burton, C. H.F. Peden, Appl. Catal. B: Environ. 72 (2007) 233.
 - J. Yaying, T. J. Toops, J. A. Pihl, M. Crocker, Submitted to Applied Catal. B.
- 1430 and 1320 cm⁻¹ Ba(NO₃)₂
 - Z. Liu, J. A. Anderson, J. Catal. 224 (2004) 18.
 - F. Prinetto, G. Ghiotti, I. Nova, L. Lietti, E. Tronconi, P. Forzatti, J. Phys. Chem. 105 (2001) 12732.
 - J. Yaying, T. J. Toops, J. A. Pihl, M. Crocker, Submitted to Applied Catal. B.
 - Ch. Sedlmair, K. Seshan, A. Jentys, J. A. Lercher, J. Catal. 214 (2003) 308.
- 1550, 1465, 1412, and 1250 cm⁻¹ γ -Al₂O₃ NO₃
 - Z. Liu, J. A. Anderson, J. Catal. 224 (2004) 18.
 - T. J. Toops, D. B. Smith, W. P. Partridge, Appl. Catal. B: Environ. 58 (2005) 245.
 - J. Yaying, T. J. Toops, J. A. Pihl, M. Crocker, Submitted to Applied Catal. B.
 - A. L. Goodman, T. M. Miller, V. H. Grassian, J. Vac. Sci. Technol. A 16 (1998) 2585.

NO_x Storage DRIFTS Spectra from Fresh LNTs

- Spectra at 200 and 300°C are similar
 - Large portion of nitrates stored on γ -Al₂O₃; approximately 25% by peak area
 - Ba nitrites form first, but peak is less intense at 300°C

Al₂O₃ Nitrates Not Stable at 400°C

- No formation of nitrates on γ -Al₂O₃
- LNT is saturated after 30 min of NO exposure

Peak Assignments (cm⁻¹)

Ba(NO₃)₂ • 1320 and 1430

Ba(NO₂)₂ • 1215

Flow Conditions

• 300 ppm NO, 10% O2, and Ar bal

Fewer Al₂O₃ Nitrates After Aging at 900°C

- Reduction in γ -Al₂O₃ peak height/area corresponds to reduction in γ -Al₂O₃ surface area or Ba redispersion over γ -Al₂O₃
- Ba sites appear not to be as affected by aging
 - Consistent with 200°C NO_x storage
 - Ba could be redispersing and covering γ -Al₂O₃

Further Reduction in Al₂O₃ Nitrates After 1000°C Aging

- Almost complete loss of γ -Al₂O₃ NO_x storage sites
- Ba sites appear not to be as affected by aging
 - Ba(NO₃)₂ peak at 1430 cm⁻¹ is now clearly visible

Effect of Aging on Al₂O₃ Nitrates Not Seen at 700 or 800°C

- Maximum peak height ratios of Al₂O₃ nitrate and Ba(NO₃)₂ peaks at 1550 and 1430 cm⁻¹, respectively
- Decrease in peak ratio begins when aging above 880°C

XRD Provides Further Evidence of Ba Redispersion

- Disappearance of BaCO₃ peaks at 929°C
 - No evidence of formation of other Ba phases, e.g., BaAl₂O₄
- Elemental Ba still present in unidentified phase (EPMA)
- BaCO₃ transition minimally affects NO_x conversion

XRD Spectra of samples aged at indicated temperature

DRIFTS Elucidates Mechanisms of Reduction in NO_x Storage

- 200 and 300°C
 - Reductions in NO_x storage at > 900°C are largely a result of loss of AI_2O_3 nitrate sites
 - Possible Ba redispersion
 - $Ba(NO_3)_2$ is much less affected by aging
- 400°C
 - Storage can only be affected by change in Ba sites since AI_2O_3 does not store NO_3 's at this T

Ba and Al₂O₃ Nitrates more Stable After Aging

- γ-Al₂O₃ nitrates decompose first below 400°C
- Aging increases stability of both γ-Al₂O₃ and Ba nitrate bonds by ~ 50°C
 - Possible Ba redispersion and effect of Ba-support interaction

Storage: 300ppm NO, 10% O₂, Ar bal. TPD: 100% Ar

Higher Stability Nitrates Possible Explanation for More Efficient Reduction

 Higher stability nitrates would release slower and be more effectively reduced

– Smaller NO_x puff

Conclusions

- NO oxidation seems to be improved by increasing PGM particle size
- Improvement in NO_x reduction efficiency is explained by increasing nitrate stability with aging
- γ -Al₂O₃ stores a significant amount of NO_x before high-temperature aging
- Large reductions in NO_x storage capacity at 200 and 300°C are consistent with alumina surface area reduction

Acknowledgements

- Funding provided by U.S.
 Department of Energy (DOE)
 Office of Vehicle Technologies
- LNT catalysts supplied by Umicore (formerly Delphi)
- STEM/EDS performed at ORNL High Temperature Materials Laboratory (HTML)

Thank you for your attention

Questions?

Introduction of H₂O and CO₂ Marginally **Reduces Al₂O₃ NO₃ Formation**

- Switching exp's with H_2O and CO_2 show similar trends to SS NO_x adsorption
 - AI_2O_3 nitrates are most affected by aging

Rich (30s): 300 ppm NO, 5% CO₂, 5% H₂O, 1.13% CO, .68% H₂, N₂ bal

