

Distributed Impact of Sulfation on LNT Catalyst Reactions

Bill Partridge, Jae-Soon Choi, Stuart Daw

Oak Ridge National Laboratory Fuels, Engines and Emissions Research Center

Presented at : 10th DOE Crosscut Workshop on Lean Emissions Reduction Simulation May 2nd, 2007 University of Michigan Dearborn, Michigan

Focus is on Spatial Nature of LNT Sulfation

Background and Motivation:

- Sulfation details of strong interest to OEMs
 - Feedback from CLEERS Workshops and Focus Meetings
 - Recent CLEERS priority polling
 - ORNL CRADA interests
- Previous engine-based sulfation studies w/ high-S diesel show plug-like loss of NO_x capacity
 - Other works suggest both distinct and distributed S-front

Goals:

- Measure spatial nature of sulfation plug or distributed
- Evaluate impact of sulfation on nitrogen selectivity
- Identify sulfur species involved in desulfation

Experimental Approach

- Catalyst: Umicore GDI LNT (CLEERS Reference)
 - 7/8" x 3" x 625cpsi core, CLEERS degreened
 - Further degreened before starting S/DeS study (NSR short cycling at 550 C for 5 h)

Measurements & Analytical Techniques Applied:

Technique	Location	Species	Probe Size
Chemi.	Cat. Out	NO, NO _x	n/a
FTIR	Cat. Out	NH_3 , N_2O , NO_2	n/a
SpaciMS	Intra-cat.	H_2 , NO_x , H_2S , SO_2 , COS	150-μm O.D.
Thermocouple	Intra-cat.		250-μm O.D.

Procedure:

- 1. Performance evaluation (short NSR & OSC)
- 2. 1st S dosing, continuous S dosing w/ short NSR cycling
- 3. Continue short NSR w/o S dosing for 30 min (SO₂ purging)
- 4. Performance evaluation (short NSR & OSC)
- 5. 2nd S dosing, repeat 2 thru 4
- 6. Desulfation by TPR (325 to 700 C at 5 C/min)
- 7. Repeat 1 thru 6

Conditions for LNT Bench Performance Evaluation⁴

T=325 °C, SV=30000 h⁻¹ (total flow=13354 sccm)

	Environment	Time	Gas Composition					
	A STATE OF THE OWNER		NO	02	H ₂	H ₂ O	CO ₂	N ₂
NSR Short Cycling	Lean	60 s	300 ppm	10%	0%	5%	5%	Bal
	(storage)	1.59				100		
	Rich	5 s	0 ppm	0%	3.4%	5%	5%	Bal
	(regeneration)				10			
OSC Short Cycling	Lean	60 s	0 ppm	10%	0%	5%	5%	Bal
	(storage)	11				100		
	Rich	5 s	0 ppm	0%	3.4%	5%	5%	Bal
	(regeneration)		1 . S.					
TPR	Rich	n.a.	0 ppm	0%	0.1%	5%	5%	Bal
DeSulfation	T: 325-700C			1				

4 Consecutive S/De-S Cycles Performed

#	[SO2]	Exposure	Total S	Note
1	(ppm)	Time (h)	Loading (g/L)	
1	20	2+4	5.1	H2/CO for short NSR; long NSR performed
2	40	1+1	3.4	
3	40	1+1	3.4	OSC performed; longer soak time for deS
4	20	2+2	3.4	OSc performed

Results similar for all studies

Here we focus on the 4th S/De-S cycle

5

Sulfation Results to be Discussed

- Nitrogen Selectivity
- NO_x Storage and Reduction, NSR
 - Spatiotemporal NO_x profiles
 - Spatiotemporal H₂ profiles
- Oxygen Storage Capacity, OSC
 - Spatiotemporal H₂-consumption\OSC profiles
- Reaction exotherms
 - Spatiotemporal Temperature profiles
- TPR DeSulfation

Conceptual model of NSR Sulfur Effects

- Nitrogen Selectivity
- NO_x Storage and Reduction, NSR
 - Spatiotemporal NO_x profiles
 - Spatiotemporal H₂ profiles
- Oxygen Storage Capacity, OSC
 - Spatiotemporal H₂-consumption\OSC profiles
- Reaction exotherms
 - Spatiotemporal Temperature profiles
- TPR DeSulfation

Conceptual model of NSR Sulfur Effects

Sulfation clearly impacts integral LNT performance

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

8

Sulfation strongly influenced NH_3 formation and NO_x slip

Sulfur Loading (g/L)

- NO_x conversion decreased with increasing sulfur loading
- NH₃ increased with each S dosing (largest effect)
- N₂O unaffected by sulfation
- Sulfur effects were stable w/o desulfation
- TPR DeSulfation recovered original performance

9

- Nitrogen Selectivity
- NO_x Storage and Reduction, NSR
 - Spatiotemporal NO_x profiles
 - Spatiotemporal H₂ profiles
- Oxygen Storage Capacity, OSC
 - Spatiotemporal H₂-consumption\OSC profiles
- Reaction exotherms
 - Spatiotemporal Temperature profiles
- TPR DeSulfation

Conceptual model of NSR Sulfur Effects

Sulfation produced distinct stepped effect on NO_x-loading profiles

Fresh-state:

NSR localized

1st Sulfation:

Poisoned 1st quarter

11

 NSR localized in 2nd 1/4

2nd Sulfation:

Poisoned 2nd quarter

TPR DeS: Recovered fresh performance

Non-inlet NO_x slip @ saturation:

- Differing NO\NO₂ response at 30amu
- ~240ppm NO₂ + 60ppm NO
- ~ equilibrium

NSR H₂ utilization showed similar distinct stepped ¹² response to sulfation

Fresh-state:

- NO_x-attributable H₂-Util. localized in front
- H₂-Util. in back ³/₄ due to OSC

Sulfated-state:

- Localized NO_x-attributable H₂-Util. moved downstream
- OCS remained active in sulfated region
- Post-NSR OSC region shortened by sulfation

TPR DeSulfation:

Fresh performance recovered

NSR sulfur response was plug-like and progressive with increasing sulfur dosing

- NSR was localized in fresh and sulfated states
- NSR completely poisoned in sulfated zone
- Localized NSR zone moved progressively down the catalyst axis with increasing sulfur dosing
- Post-NSR OSC-only zone shortened by sulfation
- NO oxidation could equilibrate in S-poisoned zone and affect downstream NSR

- Nitrogen Selectivity
- NO_x Storage and Reduction, NSR
 - Spatiotemporal NO_x profiles
 - Spatiotemporal H₂ profiles
- Oxygen Storage Capacity, OSC
 - Spatiotemporal H₂-consumption\OSC profiles
- Reaction exotherms
 - Spatiotemporal Temperature profiles
- TPR DeSulfation

Conceptual model of NSR Sulfur Effects

OSC sulfur response was plug-like and progressive with increasing sulfur dosing

OSC is uniformly distributed in the freshstate and unsulfated zones

1st sulfur dosing:

- Impacts 1st ¼ only
- Did not completely poison 1st ¼ OSC

2nd sulfur dosing:

- Continued 1st ¼ OSC degradation
- Proceeded to 2nd ¼ OSC

Downstream OSC ~ constant

TPR DeS recovered Fresh performance

- Nitrogen Selectivity
- NO_x Storage and Reduction, NSR
 - Spatiotemporal NO_x profiles
 - Spatiotemporal H₂ profiles
- Oxygen Storage Capacity, OSC
 - Spatiotemporal H₂-consumption\OSC profiles
- Reaction exotherms
 - Spatiotemporal Temperature profiles
- TPR DeSulfation

Conceptual model of NSR Sulfur Effects

Reaction exotherms confirmed localized nature of ¹⁷ NSR, and plug-like NSR response to sulfation

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY NSR-attributable exotherm was localized & S-effect was localized and progressive

1st ¹/₄ : Fresh state

2nd ¹/₄ : 1.7g/L Sulfur state

3rd ¹/₄ : 3.4g/L Sulfur state

Total NSR exotherm moved but was ca. constant as sulfation progressed

TPR DeS recovered Fresh-state performance

UT-BATTELLE

Confirmed SpaciMS-based observations

NSR and OSC S-zone exotherms similar

Reaction exotherms confirmed distributed nature ¹⁸ of OSC, and OSC response to sulfation

- Rich-phase exotherm : H₂+stored O₂
- Rich-Lean transition exotherm : reoxidation of Ce₂O₃ to 2CeO₂
- OSC-attributable exotherms :
 - evenly distributed in fresh state
 - progressively poisoned by sulfur exposure
- Sulfated-zone NSR exotherm due to OSC
 - Note similarity in sulfated zones

- Nitrogen Selectivity
- NO_x Storage and Reduction, NSR
 - Spatiotemporal NO_x profiles
 - Spatiotemporal H₂ profiles
- Oxygen Storage Capacity, OSC
 - Spatiotemporal H₂-consumption\OSC profiles
- Reaction exotherms
 - Spatiotemporal Temperature profiles
- TPR DeSulfation

Conceptual model of NSR Sulfur Effects

H₂S was major product of TPR DeSulfation

H₂S was major product of TPR DeSulfation

- SO₂ more significant after 1st DeS
- COS negligible

H₂S & SO₂ emission ~symmetric around peak at 560C

Major sulfur was released between 500 and 600C

- H₂S & SO₂ emission slow after peak
 - ~80min high-Temp soak required to reach baseline

20

- Nitrogen Selectivity
- NO_x Storage and Reduction, NSR
 - Spatiotemporal NO_x profiles
 - Spatiotemporal H₂ profiles
- Oxygen Storage Capacity, OSC
 - Spatiotemporal H₂-consumption\OSC profiles
- Reaction exotherms
 - Spatiotemporal Temperature profiles
- TPR DeSulfation

Conceptual model of NSR Sulfur Effects

Observation Summary

NSR was localized and OSC was distributed

Sulfation:

- Impacted NSR and OSC in a progressive plug-like manner
- Poisoned NSR but only degraded OSC
- Results in varying and different NSR and OSC zones
 - Displaced NSR zone downstream
 - Created upstream OSC-only zone
 - Shortened downstream OSC-only zone
- Could change NO_x partitioning at NSR zone
- Could change peak lean-phase T
- Affected NO_x conversion
- Affected NH₃ selectivity (major LNT-out effect)

TPR DeSulfation recovered fresh-state performance

Conceptual LNT model: fresh state

Fresh State:

- NSR localized at catalyst front
- OSC evenly distributed throughout
- Residual H₂ and NH₃ from NSR zone oxidized in OSR-only zone

Three NSR Sub-Zone Regions:

(ref: Pihl, SAE 2006-01-3441)

- Mostly Regenerated

 H₂+Slow NO_x sites→NH₃
- 2. Regeneration Front
 - NO_x and O₂ reduction via H₂ and NH₃ (upstream product)
- 3. Un-Regenerated
 - Minor desorption

Conceptual LNT model: sulfated state

Sulfation:

- Creates a localized sulfation zone at the catalyst front
- Sulfation front is distinct and progresses like a plug
- In the sulfated zone:
 - NSR is inactive
 - OSC is active but degraded
- OSC in sulfated zone:
 - Equilibrates NO/NO2
 - reduces reductant to NSR zone
- As Sulfation progresses:
 - NSR zone moves downstream
- OSC-only zone is reduced by advancing NSR zone
- NH₃ slip increases due to reduced OSC-only zone

Acknowledgments

- Neal Currier, Alex Yezerets (Cummins Inc.)
- Chuck Peden (PNNL)
- Dick Blint (GM)
- Vitaly Prikhodko (experimental help), Josh Pihl, Jim Parks, Todd Toops, Bruce Bunting, Kalyana Chakravarthy (ORNL FEERC)

Sponsor: DOE Office of FreedomCAR and Vehicle Technologies, Gurpreet Singh

Thank You

Bill Partridge 865-946-1234 partridgewp@ornl.gov

> Jae-Soon Choi 865-946-1368 choijs@ornl.gov

Stuart Daw 865-946-1341 dawcs@ornl.gov

JT-BATTELLE

