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Intra-catalyst measurements clarify LNT chemistry
Sulfation impact on spatiotemporal:

NOx storage/regeneration, oxygen storage capacity, & and NH3 Slip

NH3 formation and utilization during regen

Previous SpaciMS work on WGS in LNT
Choi, Partridge, Epling, Currier, Yonushonis, Catal. Today 114, 102, 2006

Based on Pt/K/Al2O3 EmeraChem LNT

Neutral, OSC, NSR cycling w/o sulfation

Assessed WGS contribution to LNT regeneration

WGS relevant to Cummins OBD Patent (US Patent App. 20080168824)

GOAL:
Clarify spatiotemporal sulfation impact on WGS
Expand conceptual model of LNT sulfation
Provide information relevant to catalyst and OBD development

Background
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Approach: Controlled Bench Reactor Experiments with 
Spatially & Temporally Resolved Gas Analyses

Model LNT Catalyst

● Substrate: 300-cpsi cordierite

● Washcoat: Pt/Ba/Al2O3

● No Oxygen-Storage Capacity 

(OSC) such as Ce

● Evaluated as a 3/4” x 3” core

Cat-In Cat-Out

SpaciMS*

Gas flow

Sampling capillary

*Spatially Resolved Capillary Inlet Mass Spectrometer
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WGS converts CO to H2 via: CO + H2O → H2 + CO2

Lean-phase composition dictates CO reaction possibilities
Neutral: WGSR only
OSC: WGSR vs. OSC
NSR: WGSR vs. OSC vs. LNT regeneration

Fast Cycling (60:5-s lean:rich cycling)

Systematically Vary WGS Competition for CO Reductant 

RICH (5s) LEAN (60s)

CO H2O NO O2 H2O

Neutral 2% 5% 0 0 5%

OSC 2% 5% 0 10% 5%

NSR 2% 5% 300ppm 10% 5%
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Experimental Procedure:

Procedure
● Baseline: 0 g/L S

● Performance evaluation
Neutral; OSC; NSR

● 1st S dosing: 0.85 g/L S

● Performance evaluation
Neutral; OSC; NSR

● 2nd S dosing: <1.7 g/L S

● Performance evaluation
Neutral; OSC; NSR
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for 30 min

SO2 slip during 2nd S dosing
S expected in back of catalyst
<1.7 g/L sulfur stored

1st S dosing 2nd S dosing

lower S capacity than Umicore GDI LNT
Umicore: BaO=17 g/L

Captured 40-ppm SO2 for 2hr
Ba-Model LNT: BaO=15 g/L
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Ceria Is the Prominent WGS Promoter

Pt/Ceria extensively studied for WGS & Reverse WGS, e.g.:
Goguet, Meunier, Tibiletti, Breen & Burch, J. Phys. Chem. B 108, 20240, 2004

Luo & Gorte, Catal. Letters 85, 139, 2003

Jacobs, Davis, Appl. Catal. A General 333, 192, 2007

Many, many more; fundamental & applied; SO2 poisoning…
Common theme is importance of metal-support interface & activation on Pt

Previous work w/ Pt/K/Al2O3 catalyst showed WGS activity

Barium appears to promote WGS
~3.5x gain from Pt\Ba\Al2O3 vs. Pt\Al2O3

not implying Ba is comparable to Ce

CO Turnover Freq. =
moles CO / time       1
moles surface Pt    sec
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NSR
Response to

Sulfation
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Baseline (0 gS / Lcat): 
NSR in front ½

Back ½ unused

1st Sulfation (0.85 gS / Lcat):
Front ¼ inactive

NSR in back ¾

Broadened NSR zone

(not perfectly “plug like”)

2nd Sulfation (>1.7 gS / Lcat):
Front ½ inactive

NSR in back 1/2

Sulfation Progressively Poisons NSR in Plug-Like Fashion

gS/Lcat 1st Q. 2nd Q. 3rd Q. 4th Q.

0 NSR unused

0.85 Inactive degraded Degraded???

<1.7

NSR Cycling; 0, 0.85 & <1.7 g-S / Lcat
NOx Storage

Qualitative Pictorial Representation of NSR Activity
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OSC 
Response to

Sulfation
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OSC is due to Pt-site  oxidation & 
reduction

No Ce or support OSC

Measures active Pt area

OSC ~ uniformly distributed along 
catalyst

i.e., uniform Pt distribution

OSC active in NSR-sulfated zone

Minor sulfation impact on OSC
~3-17% loss relative to Baseline
~ follows NSR poisoning
Morphology changes around some 
Pt sites?
Minor oxidation & reduction at Pt-
Ba interface or Ba-Peroxide?

Sulfation Has Little Impact on “OSC”

OSC Cycling; 0, 0.85 & <1.7 g-S / Lcat

“OSC”: Pt Area
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WGS 
Response to

Sulfation
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Baseline (0 gS / Lcat): 
WGS throughout

1st Sulfation (0.85 gS / Lcat):
Front ½ : “Max” degradation 

~90-95% loss from Baseline

WGS in back ½ (~ Baseline activity)

2nd Sulfation (>1.7 gS / Lcat):
Front 3/4 : “Max” degradation 

WGS in back ¼

WGS S-front leads NSR S-front
By ~ ¼ catalyst

WGS S degradation differs

WGS more sensitive to S than NSR

WGS Very Sensitive to Sulfur Degradation

Neutral Cycling; 0, 0.85 & <1.7 g-S / Lcat

WGS

~95% Loss
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Oxygen Mitigates Sulfur Degradation of WGS

WGS
OSC & Neat Cycling WGS Sulfation

OSC reduces WGS at Baseline 

OSC enhances WGS in Sulfated states
~5-10% Gain vs. Baseline Neutral

Little recovery vs. ~95% loss w/ Sulfation

OSC gain @ max S degradation front
Front ½ for 0.85 gS/L case

Middle ½ for  <1.7 gS/L case

OSC S mitigation is minor 
Pt desulfation…..

Other non-Pt-S route accounts 
for primary WGS S-degradation

Pt-support interface…..
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Oxygen Readily Displaces S from Pt

Oxygen rapidly displaces S from Pt
Fast (<sec.) process

Mobile surface S slowly re-poisons Pt 

OSC enhances WGS by freeing Pt of S
Pt-S is not major S degradation path

Carbon can also slowly degrade WGS
This is separate from S degradation

But OSC will rapidly remove C too

Carbon degrades via Pt-support interface
Goguet et al., J. Phys. Chem. B 108, 20240, 2004

C forms in a disk around the Pt

Degrades “ring of active area”
surrounding Pt

Suggests similar mode for S degradation
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WGS Very Sensitive to Sulfation of Pt-Support Interface

DRIFTS CO peak area and position 
doesn’t trend w/ S level 

Pt sites are available (c.f. OSC)

Pt electronic density & Pt-CO affinity 
not varying

S has nonlinear impact on WGS
Small initial S dose has a major impact 
on WGS (Fresh vs. 4th Q)

4th Q has significant NOx capacity

CO DRIFTS @ 325C

Increasing S
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Growing S Disk Conceptual Model for WGS Degradation
S disks or islands grow around Pt sites

Impact support at interface & near Pt

Inhibition of spillover between Pt and oxides

Blocking of Pt-support interfacial sites

CO or H2O activation (Pt e- density change)

WGS more sensitive than NSR to S growth
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Global Model of S Impact on NSR, WGS & OSC

• Fully active in S-free zone
• WGS sensitive to initial S
• O2 keeps Pt S free in fast cycling

• S-islands grow around Pt sites
Progressive WGS degradation
NSR insensitive to initial S

× Due to surface N mobility?
× S-free Ba exists in field

Progressive NSR degradation
WGS degradation max
Field sulfation begins

• Field sulfation continues
NSR becomes poisoned
Fixed WGS degraded to max
Progressive minor OSC degradation
× Due to minor Ba-peroxide?

Sulfated Ba Pt S-Free Ba

Poisoned Degraded Active

Progressively 
Degraded Active

Active

Maximum 
Degradation

Progressively 
Degraded

Sulfated Ba Pt S-Free Ba

Poisoned Degraded Active

Progressively 
Degraded Active

Active

Maximum 
Degradation

Sulfated Ba Pt S-Free BaSulfated Ba Pt S-Free Ba

Poisoned Degraded Active

Progressively 
Degraded Active

Active

Maximum 
Degradation

Progressively 
Degraded
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Conclusions

• WGS occurs on Ba LNT catalysts (not just Ce-containing catalysts)
• Sulfation impacts various LNT reactions
− NSR: Progressively degraded and poisoned
− OSC: Minor degradation
− WGS: Progressively degraded to non-zero max

• S impacts various LNT functions differently
• WGS is very sensitive to S
− WGS S-degrdation front leads NSR by ~ ¼ catalyst

• Exhaust O2 keeps Pt S free
− WGS S-degradation not due to Pt-S

• Conceptual Growing-S-Island model impacts support at interface &near Pt

• So what:
– Improved understanding global impact of sulfation on LNT functions
– Enable better models and catalyst system design (device size/capacity)
– Enable improved OBD & control (cf. Cummins Control Patent)
– Better emissions control & efficiency
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