Ammonia Formation and Utilization in Lean NO<sub>x</sub> Trap Catalysts: Experimental Determination of Reaction Pathways



Managed by UT-Battelle for the Department of Energy **Bill Partridge, Jae-Soon Choi** Oak Ridge National Laboratory Fuels, Engines and Emissions Research Center

11<sup>th</sup> DOE Crosscut Workshop on Lean Emissions Reduction Simulation May 13, 2008
University of Michigan Dearborn, Michigan

U.S. DOE Program Management Team: Ken Howden, Gurpreet Singh, Steve Goguen



# **Background & Motivation**

# **Basic Chemistry:**

- Conceptual model of S impact on NH<sub>3</sub> slip
  - Need to develop NH<sub>3</sub> SpaciMS capability
- Nature of NH<sub>3</sub> formation; "fast" vs. "slow" sites?
- Role of NH<sub>3</sub> in regeneration
  - H<sub>2</sub> & NH<sub>3</sub> equivalently effective
  - NH<sub>3</sub> acts as a H carrier?

# Catalyst Design:

- Minimize NH<sub>3</sub> slip in LNT systems
- Manage NH<sub>3</sub> in hybrid LNT-SCR systems





NH<sub>3</sub> created at 'slow' sites, & follows N<sub>2</sub> and reductant slip



# Goals

- SpaciMS intra-catalyst transient NH<sub>3</sub> measurements
- Resolve timing of species transients along catalyst
- Investigate temperature effects
- Elucidate regeneration pathways



# Approach

- Catalyst core (3/4" x 3") on bench reactor
- Washcoat: Pt/Ba/Al<sub>2</sub>O<sub>3</sub> model catalyst
  - No cerium oxygen-storage component
- CLEERS standard short cycling:
  - 60-s lean: 300ppm NO + 10% O<sub>2</sub>
  - 5-s rich: 2% H<sub>2</sub>
  - Common: 5%  $H_2O$  + 5%  $CO_2$  + 100ppm Kr + Ar balance
  - SV: 30k hr-1
- Two mid-catalyst temperatures:
  - 200 & 325°C
- Resolve species distributions along catalyst channel
  - SpaciMS
  - 13 locations along channel
  - NH<sub>3</sub> generation and utilization
  - NO<sub>x</sub>, N<sub>2</sub> and H<sub>2</sub>







# **Temporally Resolved Species Distributions**



## Nature of H<sub>2</sub> & N<sub>2</sub> Transients are Distinctly Different



At a given location:

- H<sub>2</sub> consumed at early regen times
- H<sub>2</sub> slips at later regen times

- N<sub>2</sub> slips from upstream locations at early regen times
  - integral effect
- Local N<sub>2</sub> generated at later times
- Little N<sub>2</sub> generated at L>38mm



## Ammonia Exists at Early Regen Times Inside Catalyst



- NH<sub>3</sub> onset time varies
- NH<sub>3</sub> onset tracks H<sub>2</sub> onset
- Steep leading edge & no early slip
  - aggressive local consumption
- NH<sub>3</sub> may slip at late regen times

- Shows nature of reductant
- Long tail is instrument broadening
- 3 general regions:
  - Buildup: 0-9.5 mm
  - Balanced: 9.5-28.6 mm
  - Deficit: 28.6-76.2 mm



# Similar N<sub>2</sub> & NH<sub>3</sub> Generation Timing Inside Catalyst



- At 9.5mm N<sub>2</sub> & NH<sub>3</sub> are generated at similar early regen times
- N<sub>2</sub> & NH<sub>3</sub> profiles more like parallel than consecutive reactions
- At 57.2mm observe typical  $N_2$ ,  $H_2$ ,  $NH_3$  catalyst effluent sequence
  - This is an integral effect
- SCR reactions occurring

#### **Integral Effects Obscure True Catalyst Nature**



3000

2500

2000

1500

1000

500

0

50

[NH3], [N2], [H2]/10 (ppm)

-NO

-N2

- H2

46

48

-NH3

#### What we've learned so far..

- NH<sub>3</sub> generated on same timescales as N<sub>2</sub> at front locations inside the catalyst
- NH<sub>3</sub> is aggressively consumed at its temporal front
- SCR reactions occur
- Simultaneous N<sub>2</sub> & NH<sub>3</sub> suggests parallel N<sub>2</sub> & NH<sub>3</sub> regeneration pathways
- N<sub>2</sub> slips at early regen times from location to location
- Typical N<sub>2</sub>, H<sub>2</sub>, NH<sub>3</sub> effluent sequence is an integral effect
- Even our 3-mm intra catalyst sections show integral effects
- Integral effects obscure true catalyst nature



# **Cycle-Integrated Species Distributions**



## **200°C Cycle Integrated Distributions**



- NSR zone 0-47.6mm
- 50%  $NO_x$  stored in ca. 0-10mm
- Negligible rich-phase NO<sub>x</sub> puff
- 3 distinct NH<sub>3</sub> regions
- NH<sub>3</sub> buildup in high NO<sub>x</sub> density zone
- NH<sub>3</sub> consumption beyond NSR zone



## **325°C Cycle Integrated Distributions**



- Significant rich-phase NO<sub>x</sub> puff
- Less stable & more mobile NO<sub>x</sub>
  - -Lower H<sub>2</sub>/NO<sub>x</sub> ratio
- Lower NH<sub>3</sub>
  - Consistent w/ lower H<sub>2</sub>/NO<sub>x</sub>

- Same 3 distinct NH<sub>3</sub> regions
- Transient NH<sub>3</sub> timing similar to 200°C
  - NH<sub>3</sub> at early regen times
  - Aggressive NH<sub>3</sub> consumption at front



# NO<sub>x</sub> Distributions Similar but NH<sub>3</sub> Differ at 200 & 325°C



- Similar Lean NO<sub>x</sub> distributions
  - Equivalent regen effectiveness
- Similar H<sub>2</sub> Distribution
- Different NH<sub>3</sub> Distribution
- Implies parallel N<sub>2</sub> and NH<sub>3</sub>

#### regeneration pathways



- Amount of NH<sub>3</sub>-pathway regen varies at 200 & 325°C
- Pathway partitioning varies with Temp.
   Consistent with H<sub>2</sub>/NO<sub>x</sub> NH<sub>3</sub> dependence
- Equivalent regen effectiveness of  $H_2$ and  $NH_3$  (consistent with literature) AK

#### H<sub>2</sub> Regeneration Occurs Via Parallel Pathways



• Pathway selectivity  $(k_{N2} / k_{NH3})$  varies with  $H_2/NO_x$ 

- > Temp : >  $NO_x$  puff : <  $H_2/NO_x$  : <  $NH_3$  : favors Direct  $H_2$  pathway
- Variation in k<sub>SCR</sub> can affect apparent [NH<sub>3</sub>]
- Regeneration effectiveness doesn't vary with pathway partitioning
- Global stoichiometry doesn't vary with partitioning
  - Via Direct H<sub>2</sub>:
    - $Ba(NO_3)_2 + 5H_2 \rightarrow N_2 + BaO + 5H_2O$
  - Via Intermediate NH<sub>3</sub>:
    - $Ba(NO_3)_2 + 8H_2 \rightarrow 2NH_3 + BaO + 5H_2O$
    - $3Ba(NO_3)_2 + 10NH_3 \rightarrow 8N_2 + 3BaO + 15H_2O$

# **Summary & Conclusions**

- NH<sub>3</sub> is generated synchronous with N<sub>2</sub> inside the catalyst
- $NH_3$  from "Slow"  $NO_x$  sites not observed in our fast cycling experiments
- Integral effects obscure actual intra-catalyst chemistry
- H<sub>2</sub> regeneration of LNTs apparently occurs through parallel Direct H<sub>2</sub> & Intermediate NH<sub>3</sub> pathways
- Partitioning between H<sub>2</sub> & NH<sub>3</sub> pathways appears to vary with temperature

– Favors NH<sub>3</sub> pathway at lower temperatures

- Partitioning apparently driven by local H<sub>2</sub>/NO<sub>x</sub> stoichiometry
- Regen effectiveness independent of partitioning btwn. N<sub>2</sub> and NH<sub>3</sub> pathways
- $k_{SCR}$  can vary w/  $[NO_x]_{Local}$  & T and affect apparent  $k_{N2}$  &  $k_{NH3}$
- NH<sub>3</sub> oxidation occurs beyond NSR region (supports S effects work)

Todd Toops, Josh Pihl, Stuart Daw, Jim Parks, Vitaly Prikhodko, Kalyana Chakravarthy (ORNL FEERC)

#### **Sponsor:**

DOE Office of Vehicle Technologies, Gurpreet Singh, Ken Howden, Steve Goguen

# **Thank You**

Bill Partridge 865-946-1234 partridgewp@ornl.gov

> Jae-Soon Choi 865-946-1368 choijs@ornl.gov

