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Background & Motivation 

Basic Chemistry:
• Conceptual model of S impact on NH3 slip

– Need to develop NH3 SpaciMS capability

• Nature of NH3 formation;  “fast” vs. “slow” sites?

• Role of NH3 in regeneration
– H2 & NH3 equivalently effective 
– NH3 acts as a H carrier?

Catalyst Design:
• Minimize NH3 slip in LNT systems
• Manage NH3 in hybrid LNT-SCR systems
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Goals 

• SpaciMS intra-catalyst transient NH3 measurements

• Resolve timing of species transients along catalyst

• Investigate temperature effects

• Elucidate regeneration pathways
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Approach

• Catalyst core (3/4” x 3”) on bench reactor

• Washcoat: Pt/Ba/Al2O3 model catalyst
– No cerium – oxygen-storage component

• CLEERS standard short cycling:
– 60-s lean: 300ppm NO + 10% O2

– 5-s rich: 2% H2

– Common: 5% H2O + 5% CO2 + 100ppm Kr + Ar balance
– SV: 30k hr-1

• Two mid-catalyst temperatures:
– 200 & 325°C

• Resolve species distributions along catalyst channel
– SpaciMS
– 13 locations along channel
– NH3 generation and utilization
– NOx, N2 and H2
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Temporally Resolved 
Species Distributions
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Nature of H2 & N2 Transients are Distinctly Different

At a given location:

• H2 consumed at early regen times 

• H2 slips at later regen times

• N2 slips from upstream locations at 

early regen times
– integral effect 

• Local N2 generated at later times

• Little N2 generated at L>38mm
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Ammonia Exists at Early Regen Times Inside Catalyst

• NH3 onset time varies 

• NH3 onset tracks H2 onset

• Steep leading edge & no early slip
– aggressive local consumption

• NH3 may slip at late regen times

• Shows nature of reductant

• Long tail is instrument broadening

• 3 general regions:
– Buildup: 0-9.5 mm

– Balanced: 9.5-28.6 mm

– Deficit: 28.6-76.2 mm
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Similar N2 & NH3 Generation Timing Inside Catalyst

• At 9.5mm N2 & NH3 are generated 

at similar early regen times

• N2 & NH3 profiles more like parallel 

than consecutive reactions

• At 57.2mm observe typical N2, H2, 

NH3 catalyst effluent sequence 
– This is an integral effect 

• SCR reactions occurring

Integral Effects Obscure True Catalyst Nature

200°C, 9.5mm 200°C, 57.2mm
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What we’ve learned so far..

• NH3 generated on same timescales as N2 at front locations inside the 

catalyst

• NH3 is aggressively consumed at its temporal front

• SCR reactions occur

• Simultaneous N2 & NH3 suggests parallel N2 & NH3 regeneration pathways

• N2 slips at early regen times from location to location

• Typical N2, H2, NH3 effluent sequence is an integral effect

• Even our 3-mm intra catalyst sections show integral effects

• Integral effects obscure true catalyst nature
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Cycle-Integrated 
Species Distributions
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200°C Cycle Integrated Distributions

• NSR zone 0-47.6mm

• 50% NOx stored in ca. 0-10mm

• Negligible rich-phase NOx puff

• 3 distinct NH3 regions

• NH3 buildup in high NOx density zone

• NH3 consumption beyond NSR zone
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325°C Cycle Integrated Distributions

• Significant rich-phase NOx puff

• Less stable & more mobile NOx

– Lower H2/NOx ratio

• Lower NH3

– Consistent w/ lower H2/NOx

• Same 3 distinct NH3 regions

• Transient NH3 timing similar to 200°C
– NH3 at early regen times

– Aggressive NH3 consumption at front
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NOx Distributions Similar but NH3 Differ at 200 & 325°C

• Similar Lean NOx distributions
– Equivalent regen effectiveness

• Similar H2 Distribution

• Different NH3 Distribution

• Implies parallel N2 and NH3

regeneration pathways

• Amount of NH3-pathway regen varies 

at 200 & 325°C

• Pathway partitioning varies with Temp.
– Consistent with H2/NOx NH3 dependence

• Equivalent regen effectiveness of H2

and NH3 (consistent with literature)
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H2 Regeneration Occurs Via Parallel Pathways

• Pathway selectivity (kN2 / kNH3) varies with H2/NOx

– > Temp : > NOx puff : < H2/NOx : < NH3 : favors Direct H2 pathway

– Variation in kSCR can affect apparent [NH3]

• Regeneration effectiveness doesn’t vary with pathway partitioning

• Global stoichiometry doesn’t vary with partitioning
– Via Direct H2:

• Ba(NO3)2 + 5H2 → N2 + BaO + 5H2O

– Via Intermediate NH3: 
• Ba(NO3)2 + 8H2 → 2NH3 + BaO + 5H2O

• 3Ba(NO3)2 + 10NH3 → 8N2 + 3BaO + 15H2O

Ba(NO3)2 + H2

N2 + BaO + H2O

NH3 + BaO + H2O

kN2

kNH3

+ Ba(NO3)2
kSCR N2 + BaO + H2O

=
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Summary & Conclusions

• NH3 is generated synchronous with N2 inside the catalyst

• NH3 from “Slow” NOx sites not observed in our fast cycling experiments

• Integral effects obscure actual intra-catalyst chemistry

• H2 regeneration of LNTs apparently occurs through parallel Direct H2 & 
Intermediate NH3 pathways

• Partitioning between H2 & NH3 pathways appears to vary with temperature

– Favors NH3 pathway at lower temperatures

• Partitioning apparently driven by local H2/NOx stoichiometry

• Regen effectiveness independent of partitioning btwn. N2 and NH3 pathways

• kSCR can vary w/ [NOx]Local & T and affect apparent kN2 & kNH3

• NH3 oxidation occurs beyond NSR region (supports S effects work)
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