Fundamental Studies of NOx Adsorber Materials

Do Heui Kim, Ja Hun Kwak, <u>Chuck Peden</u>, Janos Szanyi Institute for Interfacial Catalysis Pacific Northwest National Laboratory

> CLEERS Workshop #12 April 30, 2009

Proudly Operated by Battelle Since 1965

Today's Discussion

DOE/OFCVT-funded studies of BaO/Al₂O₃ Lean NOx Trap (LNT) materials

- LNT catalyst material morphologies
 - Effects on desulfation. Also will discuss effects of sulfation levels.
 - New insights on LNT morphologies from FTIR, computations, and ultra-high field NMR.
 - Implications for LNT (and other) catalyst preparation processes.

Acknowledgments

U. S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/FreedomCAR and Vehicle Technologies Program

Experiments performed in DOE/BER's Environmental Molecular Sciences Laboratory located at PNNL, and in DOE/EE/VT's High Temperature Materials Lab at ORNL

Pacific Northwest

Summary of TP-XRD and TEM/EDX studies: Both 'Monolayer' and 'Bulk' $Ba(NO_3)_2$ morphologies present. These 'phases' can be distinguished spectroscopically.

Observed practical implications of the Ba-phase morphology.

- From TPD experiments, the "monolayer" morphology is found to decompose at lower temperature in vacuum and in a reducing atmosphere than "bulk" nitrates.
- Formation of a high-temperature (deactivating?) BaAl₂O₄ phase requires BaO coverages above 1 monolayer.
- Morphology model at least partially explains relatively small use of Ba species (often <20%) in storing NOx during typical lean-rich cycling.
- "Monolayer" Ba-phase is also easier to 'de-sulfate'.

Temperature programmed desulfation of LNT catalysts in H₂

D.H. Kim , J. Szanyi, J.H. Kwak, T. Sailer, J.C. Hanson, C.M. Wang, C.H.F. Peden, J. Phys. Chem. B **110** (2006) 10441.

Institute for INTERFACIAL CATALYSIS

Pacific Northwest

NATIONAL LABORATORY

In situ Synchrotron EXAFS/XANES and XRD

State-of-the-art *in-situ* synchrotron experiments performed at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. Specific techniques used include:

- X-ray absorption near-edge structure (XANES);
- Extended x-ray absorption fine structure (EXAFS); and
- Time-resolved x-ray diffraction (TR-XRD)

XANES results confirm that catalysts with lower Ba loading desulfate more readily

Catalysts with lower Ba loading desulfate at lower temperatures, desulfate more completely, and result in a much lower amount of a refractory BaS phase.

D.H. Kim , J. Szanyi, J.H. Kwak, T. Sailer, J.C. Hanson, C.M. Wang, C.H.F. Peden, J. Phys. Chem. B **110** (2006) 10441.

Schematic Model

of sulfur loading?

Pacific Northwest

Approach

▶ Pre-sulfated with SO_2/O_2 at 573 K

- $1g/L Pt-BaO(20)/Al_2O_3$ (S uptake / Ba = 0.12)
- 5 g/L Pt-BaO(20)/Al₂O₃ (S uptake / Ba = 0.62)

Temperature programmed reaction with H₂

 \rightarrow desulfation behavior of the sulfated samples with H₂ as a function of temp.

Institute for

INTERFACIAL

CATALYSIS

Pacific Northwest

NATIONAL LABORATORY

H₂ TPRX: sulfur loading effect

The amount of H₂S desorbed is not proportional to the sulfur loading. Sulfur species deposited at the early stage are much harder to remove.

D.H. Kim , J. Szanyi, J.H. Kwak, X. Wang, J.C. Hanson, M.H. Engelhard, C.H.F. Peden, J. Phys. Chem. C **113** (2009) 7336.

Pacific Northwest

Pt-BaO(20)/Al₂O₃, 5 g/L, with H_2 only

D.H. Kim , J. Szanyi, J.H. Kwak, X. Wang, J.C. Hanson, M.H. Engelhard, C.H.F. Peden, J. Phys. Chem. C **113** (2009) 7336.

Pacific Northwest NATIONAL LABORATORY

Pt-BaO(20)/Al₂O₃, 1 g/L, with H_2 only

D.H. Kim, J. Szanyi, J.H. Kwak, X. Wang, J.C. Hanson, M.H. Engelhard, C.H.F. Peden, J. Phys. Chem. C **113** (2009) 7336.

Pacific Northwest NATIONAL LABORATORY

Different sulfur species distribution after desulfation up to 700 °C for two different sulfur loading

Relative amounts of residual sulfur species after the same desulfation process are larger at lower loading → more difficult to remove the sulfur species at lower loading Greater tendency to form sulfide at low loading of sulfur.

Comparison: after desulfation at 800 °C

BaS XRD peak intensities (normalized to AI_2O_3 peaks) are similar for both sulfur loadings, indicating that the first sulfur deposited will predominantly form the BaS phase.

D.H. Kim , J. Szanyi, J.H. Kwak, X. Wang, J.C. Hanson, M.H. Engelhard, C.H.F. Peden, J. Phys. Chem. C **113** (2009) 7336.

Today's Discussion

DOE/OFCVT-funded studies of BaO/Al₂O₃ Lean NOx Trap (LNT) materials

- LNT catalyst material morphologies
 - Effects on desulfation. Also will discuss effects of sulfation levels.
 - New insights on LNT morphologies from FTIR, computations, and ultra-high field NMR.
 - Implications for LNT (and other) catalyst preparation processes.

FTIR after NO₂ adsorption on 2%, 8%-, and 20%-BaO/Al₂O₃ at 300K

Unique Ultra-High Field NMR at PNNL offers special advantages for probing alumina surface chemistry

 Penta-coordinate Al⁺³ ions readily observable in γ-Al₂O₃;

-20

 These species are located at the alumina surface.

JH Kwak, JZ Hu, DH Kim, J Szanyi, CHF Peden, Journal of Catalysis, **251** (2007) 189-194.

Lewis acidic 5-fold Al sites on γ -Al₂O₃ surfaces are nucleation sites for catalytic phases!

JH Kwak, JZ Hu, DH Kim, J Szanyi, CHF Peden, Journal of Catalysis, **251** (2007) 189-194.

Ultra-high resolution STEM (aberrationcorrected) shows BaO monomers at low loading

JH Kwak, D Mei, C-W Yi DH Kim, CHF Peden, LF Allard, J Szanyi, J. Catal. **261** (2009) 17-22

HR-TEM shows BaO monomers at low and dimers a higher loadings

JH Kwak, D Mei, C-W Yi DH Kim, CHF Peden, LF Allard, J Szanyi, J. Catal. **261** (2009) 17-22

Pacific Northwest

Ultra-high resolution STEM also shows that Pt can be monatomically dispersed at low loading

However, Pt 'clusters' on Al_2O_3 at a loading where the Pt/5-fold Al site ratio is much less than 1. Why??

JH Kwak, J Hu, D Mei, C-W Yi, DH Kim, CHF Peden, LF Allard, J Szanyi, Science (2009) submitted. Pacific Northwest

Summary and Conclusions

- The morphology of BaO/Al₂O₃ LNT materials is remarkably dynamic during NOx storage and reduction. Both a supported "monolayer" of Ba(NO₃)₂ and large "bulk" Ba(NO₃)₂ particles form on the alumina surface. "Monolayer" phase is more readily and much more completely desulfated than "bulk" Ba phase.
- Sulfur deposited initially on the "bulk" phase completely converts to BaS so is more difficult to remove.
- Because Ba phase morphology is so dynamic, it is important to understand the interaction with the alumina washcoat surface.
 5-fold Al⁺³ surface structures identified in ²⁷Al NMR spectra are identified as 'anchoring' sites for both Ba and Pt.
- These new results provide additional considerations for LNT synthesis. (Recall that loading Pt first before Ba results in improved catalysts - Olsson and coworkers in this morning's presentation).

