Chemical and Physical Properties of Small Pore Cu- Zeolites Catalysts for NOx Selective Catalytic Reduction with NH₃

Chuck Peden

Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland, WA 99352

Proudly Operated by Battelle Since 1965

Acknowledgments

U. S. DOE, Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program

Ja Hun Kwak, Feng Gao, Eric Karp, John Lee,* Diana Tran, Janos Szanyi, Eric Walter, and Haiyang Zhu, Institute for Integrated Catalysis, PNNL

Experiments performed in DOE/BER's Environmental Molecular Sciences Laboratory located at PNNL

*Currently at Daimler Trucks N. Am.

Pacific Northwest NATIONAL LABORATORY Institute for INTEGRATED CATALYSIS

Proudly Operated by Battelle Since 1965

Small-Pore Molecular Sieves Have Very Recently Become Primary Candidates for Commercial Cu-Zeolite Urea SCR Catalysts

- Recent patent literature has described the use of chabazite (CHA) zeolites for this application:
 - P.J. Andersen, J.E. Bailie, J.L. Casci, H.-Y. Chen, J.M. Fedeyko, R.K.S. Foo and R.R. Rajam, WO 132452 A2 (2008).
 - I. Bull, W.-M. Xue, P. Burk, R.S. Boorse, W.M. Jaglowski, G.S. Koermer, A. Moini, J.A. Patchett, J.C. Dettling, M.T. Caudle, US Patent, 7,601,662 (2009).

SSZ-13 was invented by Stacy Zones at Chevron in the mid-1980s:

- S.I. Zones, US patent 4,544,538 (1985).
- In a presentation at the recent (June, 2012) North American Catalysis Society meeting, Hai-Ying Chen (Johnson Matthey Inc.) described enhanced stability and hydrocarbon tolerance of a number of small-pore zeolites, including:
 - Cu/SAPO-34 chabazite (CHA) zeolite
 - Cu/ZSM-34 erionite (ERI) zeolite
 - Cu/SSZ-13 CHA zeolite

Small-Pore Molecular Sieves Display a Number of Beneficial Properties, Including Insentivity to Hydrocarbon Poisoning During Urea SCR

Effects of HC on "Standard" SCR Activity

H-Y Chen and coworkers NACS Meeting Abstract #OB04

Small pore molecular sieve supported transition metal catalysts for the selective catalytic reduction of NOx with NH₂

Paul J. Andersen, John Casci, Hai-Ying Chen*, Jillian Collier, Joseph M. Fedeyko, Rodney Foo, and Raj Rajaram, Johnson Matthey Inc., Emission Control Technologies, Wayne, PA 19087 (USA) *chenh@jmusa.com

"Standard" SCR NOx Conversion and N₂O Formation

Catalysts	NOx conv.(%)	N2O (ppm)
Cu/beta (Fresh)	98	17
Cu/ZSM-5 (Fresh)	98	7
Cu/SAPO-34 (Fresh)	95	1
Cu/Nu-3 (Fresh)	97	1
Cu/beta (750°C/24h)	69	16
Cu/SAPO-34 (750°C/24h)	99	3
Cu/SSZ-13 (750°C/24h)	99	7
Cu/ZSM-34 (750°C/24)	98	3
Cu/beta (900°C/1h)	58	22
Cu/ZSM-5 (900°C/1h)	28	0
Cu/SAPO-34 (900°C/1h)	97	2
Cu/Nu-3 (900°C/1h)	98	4
Cu/SSZ-13 (900°C/1h)	99	7
Cu/Sigma-1 (900°C/1h)	85	4

Cu/beta (BEA) zeolite Cu/SAPO-34 chabazite (CHA) zeolite Cu/SSZ-13 CHA zeolite

Proudly Operated by Battelle Since 1965

Very little publicly known about the physical and catalytic properties of small-pore zeolites

First open literature studies of the newest generation of Cu SCR catalysts (Kwak, et al., J. Catal. 275 (2010) 187-190).

Priority Communication

Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO_x with NH₃

Ja Hun Kwak, Russell G. Tonkyn, Do Heui Kim, János Szanyi, Charles H.F. Peden* Institute for Interfacial Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354, United State

Today will provide a progress report on our recent studies of Cu/SSZ-13 CHA zeolite-based SCR catalysts.

- Comparative reactivity and stability of Cu-zeolite catalysts Journal of Catalysis 287 (2012) 203-209.
- Effects of Cu loading Catalysis Letters **142** (2012) 295-301.
- Nature of the Cu species in Cu-CHA catalysts *Chemical* • Communications 48 (2012) 4758-4760.

Proudly Operated by Battelle Since 1965

Catalyst Samples and Treatments

- Commercial zeolites: ZSM-5 (Si/Al₂=30), Beta (Si/Al₂=38) and Y (Si/Al₂=5.2), all from Zeolyst
- SSZ-13 (Si/Al₂=12) in house as per initial patent^{*}
- Cu loading by solution ion exchange with an aqueous process Cu(NO₃)₂ solutions; varying levels of Cu²⁺ exchange.

 Filtered and dried catalysts were pre-calcined at 500 °C in laboratory air before reaction tests.

XRD of SSZ-13 with and without Cu

• HTA treatments: 800 °C in air with 10% H₂O for

	Cu-Y, FAU	Cu-beta	Cu-ZSM-5	Cu-SSZ-13
Si/Al ₂	5,3	39.0	32,9	12.4
Cu/Al	0.35	0.34	0.53	0.40
Cu loading (wt.%)	7.2	1.73	2,83	4.3
Cu I.E. level (%)	70	69	106	79

*As described by DW Fickel and RF Lobo, Journal of Physical Chemistry C **114** (2011) 1633.

16 hours

Reaction Conditions

Reaction tests:

- NH₃-SCR, and NO and NH₃ Oxidation
 - Catalyst: 0.11g
 - 350 ppm NOx, 350 ppm NH₃, 14% O₂, 10%H₂O in N₂. GHSV ~30,000 hr⁻¹.
 - Both "standard" (NOx = NO only) and "fast" (NOx = $\frac{1}{2}$ NO + $\frac{1}{2}$ NO₂) SCR reactions were performed
- Product analysis with FTIR
- % NO_x conversion = $\{(NO + NO_2)_{inlet} (NO + NO_2 + 2*N_2O)_{outlet}\}/(NO + NO_2)_{inlet}*100$

Institute for INTEGRATED CATALYSIS

"Standard" SCR Reaction – Fresh Catalysts

- Cu/ZSM-5, Cu/beta and Cu/SSZ-13 are roughly equivalent in performance.
- > Very low N_2O formation over Cu/SSZ-13 and Cu/ZSM-5.
- Cu/Y has low activity at higher temperatures due primarily to N₂O production.
- **Effects of hydrothermal aging?**

"Standard" SCR Reaction – Hydrothermally Aged (HTA)

- Cu/SSZ-13 catalyst is quite stable to HTA
- Further reduction of performance for the other Cu catalysts due, in part, to increased N₂O formation after HTA
- Essentially complete loss of Cu/Y activity after HTA

JH Kwak, D Tran, SD Burton, J Szanyi, JH Lee, CHF Peden, Journal of Catalysis **287** (2012) 203.

Institute for INTEGRATED CATALYSIS

"Fast" SCR Reaction – Fresh Catalysts

N₂O Formation NO Reduction to N₂ (estimated) Cu-SSZ-13 Cu-ZSM-5 % NOx Conversion to N2 N2O Conc., ppm - Cu-Beta Cu-SSZ-13 - Cu-ZSM-5 Cu-Y Cu-Beta Temperature, C Temperature, C

- Again, very little N₂O formation over Cu-SSZ-13
- Lower NOx conversion to N₂ over other the Cu catalysts is a result of higher N₂O formation
- Further reduction over the other Cu catalysts due to increased N₂O formation after HTA

Institute for

INTEGRATED

CATALYSIS

"Fast" SCR Reaction – Hydrothermally Aged (HTA)

- While Cu/SSZ-13 catalyst is still stable, relative loss of performance for reduction to N₂ is more severe for "fast" SCR
- As before, complete loss of activity for Cu/Y
- Still very little N₂O formation over Cu/SSZ-13 and even higher N₂O formation over Cu/ZSM-5 and Cu/beta

JH Kwak, D Tran, SD Burton, J Szanyi, JH Lee, CHF Peden, Journal of Catalysis, submitted (2011).

Institute for INTEGRATED CATALYSIS

A Number of Unknowns about the Superior Performance of CHA-Zeolite SCR Catalysts

Journal of Catalysis 275 (2010) 187-190

	Contents lists available at ScienceDirect	JOURNAL OF
	Journal of Catalysis	CAIALISIS
ELSEVIER	journal homepage: www.elsevier.com/locate/jcat	

Priority Communication

Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO_x with NH_3

Ja Hun Kwak, Russell G. Tonkyn, Do Heui Kim, János Szanyi, Charles H.F. Peden* Institute for Interfacial Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354, United States

Some questions:

- Effects on zeolite structure of this specific hydrothermal treatment used here (800 °C, 16 hours)?
- What is the nature of the active Cu species in these various catalysts?
- What gives rise to good selectivity (i.e., low N₂O formation)?

JH Kwak, D Tran, SD Burton, J Szanyi, JH Lee, CHF Peden, Journal of Catalysis **287** (2012) 203.

Reduction of Cu Species Varies Considerably with Zeolite Type

Cu/beta and Cu/ZSM-5 fully reduced to Cu⁰ by 500 °C; according to Iglesia and coworkers, the two main features are due Cu⁺² \rightarrow Cu⁺¹ and Cu⁺¹ \rightarrow Cu⁰. Catalyst powders were colored after reduction.

- Cu in Cu/Y and Cu/SSZ-13 remained as Cu⁺¹ even after TPR to 700 °C.
- Two peaks for Cu/Y due to two Cu species (in super- and sodalite-cages)
- Cu/SSZ-13 also has two peaks which may be two sites; however, recent studies by Weckhuysen, Lobo and coworkers suggest a single Cu site.

JH Kwak, D Tran, SD Burton, J Szanyi, JH Lee, CHF Peden, Journal of Catalysis **287** (2012) 203.

Questions about the state of Cu...

- Cu/ZSM-5 catalysts are likely to contain both monomeric and dimeric Cu species at the ion-exchange sites. The presence of dimeric Cu species may explain the ability of Cu/ZSM-5 to carry out NO decomposition (NO → ½N₂ + ½O₂) S.T. Korhonen, D.W. Fickel, R.F. Lobo, B.M. Weckhuysen, and A.M. Beale, *Chem. Comm.* 47 (2011) 800-802.
 - Lack of activity for NO decomposition by Cu/SSZ-13 then due to only monomeric Cu species?
- Why does Cu-SSZ-13 show two Cu⁺² → Cu⁺¹ TPR peaks if only a single Cu monomeric Cu species is present?
 - Study effects of Cu loading...

Effects of Cu Loading on "Standard" SCR

- Common reactivity measurements reveal small differences in performance as a function of Cu loading:
 - Enhanced low temperature performance from low to medium ion exchange levels.
 - Drop off in performance at both low and high temperatures at high Cu exchange levels.
- Characterization with TPR and FTIR.

JH Kwak, D Tran, J Szanyi, CHF Peden, JH Lee, Catalysis Letters **142** (2012) 295-301.

Effect of Cu Loading on the Reduction of Cu **Species in Cu-SSZ-13 Zeolites Catalysts**

- SSZ-13 (Si/Al₂=12) was synthesized by us.
- Controlled Cu loading via aqueous ion exchange.
- At low loading, only a single H₂ TPR reduction peak at ~340 °C.
- At higher loadings, a second TPR peak appears at ~230 °C, which monotonically increases in size with increasing Cu loading.

JH Kwak, H Zhu, JH Lee, CHF Peden, J Szanyi, Chemical Communications 48 (2012) 4758-4760. Pacific Northwest INTEGRATED NATIONAL LABORATORY CATALYSIS Proudly Operated by Battelle Since 1965

Institute for

Perturbation of Zeolite Framework Vibrations also Suggest Multiple Cu Sites

- IR peak at ~940 cm⁻¹ in T-O-T (Si-O-Si, Si-O-AI) region grows in with Cu loading.
 - This ~940 cm⁻¹ peak is removed first during H_2 reduction, followed by loss of ~899 cm⁻¹ peak.
- Preliminary EPR results also strongly suggest two Cu species as a function of loading.

Institute for

INTEGRATED

CATALYSIS

JH Kwak, H Zhu, JH Lee, CHF Peden, J Szanyi, Chemical Communications **48** (2012) 4758-4760. Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

NO Oxidation over Cu-SSZ-13

- ❑ Very low NO oxidation over Cu/SSZ-13.
- Very high NO reduction despite low NO oxidation suggests NO oxidation may not be critical over Cu/SSZ-13.

JH Kwak, D Tran, J Szanyi, CHF Peden, JH Lee, Catalysis Letters **142** (2012) 295-301. Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Effect of Cu Loading on "Fast" SCR

- □ Limited N₂O formation, compared to other Cu/zeolite catalysts, suggests that NO reduction pathway involving NH₄NO₂ and NH₄NO₃ may not be important over Cu/SSZ-13.
- □ Cu/SSZ-13 only zeolite-based catalyst that shows low selectivity to N₂O during "fast" SCR.

JH Kwak, D Tran, J Szanyi, CHF Peden, JH Lee, Catalysis Letters **142** (2012) 295-301. Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Another significant open question...

□ In presence of 1% H₂O, H₂-TPR shows only low-temp peak for all Cu loadings.

It appears Cu species may move under reaction conditions.

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

JH Kwak, H Zhu, JH Lee, CHF Peden, J Szanyi, Chemical Communications **48** (2012) 4758-4760.

Institute for INTEGRATED CATALYSIS

Summary and Conclusions

- Cu/SSZ-13 catalysts display outstanding performance for both "standard" and "fast" NH₃ SCR relative to other Cu/zeolite-based catalysts.
 - Limited N₂O formation and NO oxidation over Cu/SSZ-13 suggests the SCR reaction pathway may not involve the formation and decomposition of NH_4NO_2 and NH_4NO_3 .
- Significantly, the SSZ-13 small-pore zeolite provides considerably lower sensitivity to high-temperature hydrothermal aging. Reduction of performance for the other zeolite-based catalysts results from:
 - Cu/ZSM-5 and Cu/beta increased selectivity to the undesirable N₂O product, and partial loss of zeolite structure;
 - Cu/Y complete loss of zeolite structure.
- The nature of the active Cu site in CHA zeolites is an active area of research.
 - Two different Cu species within Cu/SSZ-13 were identified by $\rm H_2$ TPR and FTIR
 - The relative distribution of Cu species is dependent on Cu loading levels and reaction conditions