14th CLEERS Workshop April 21, 2011

NOx storage-reduction catalysts: similarities and differences between Ba and K

Do Heui Kim, Kumudu Mudiyanselage, Janos Szanyi, Ja Hun Kwak, Haiyang Zhu, **Chuck Peden** Institute for Integrated Catalysis (IIC) Pacific Northwest National Laboratory (PNNL)

Outline

- Need for higher temperature LNT performance
- NSR catalysts can achieve higher temperature deNOx performance by substitution of the storage and/or support material
- Comparison of performance of Ba- and Kbased NSR catalysts
 - Temperature window of optimum operation
 - Dependence on loading
- Similarities and differences in morphology
- Emphasis on understanding potential issues with K-based LNTs

INTERFACIAL

CATALYSIS

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

2

Introduction

- Higher temperature NOx reduction performance required for:
 - Difficult to meet "not to exceed" regulations during desulfations
 - Possible use of LNTs for lean-gasoline and natural gas engine applications

- PNNL/Cummins/JM CRADA focusing on degradation of possible materials for next-generation high temperature LNTs.
- CLEERS studies are addressing more fundamental issues of these potential new LNT materials related to composition, morphology, and chemical reaction kinetics and mechanisms.
- For these studies, PNNL is preparing potential HT-NSR materials based on literature and prior CLEERS work at PNNL.
- A progress report on initial studies.

Institute for

High Temperature LNT Catalyst Materials

- K-based LNTs known to exhibit higher temperature performance
- Recent literature reports suggest titania (TiO₂) may be a better support for K-based LNTs than alumina (Al₂O₃)
- Prior CLEERS studies on Ba-based LNTs at PNNL have suggested MgAl₂O₄ as a promising support material for high temperature application

K-Based HT-LNT Catalyst Materials

Pt-K/Support

 Superior activity of MgAl₂O₄-supported LNT relative to Al₂O₃- and TiO₂supported samples over all temperatures. • Moreover, maximum NOx uptake activity at a considerably higher temperature

of 450 °C.

K-loading effects on MgAl₂O₄ support materials

- We're not aware of prior systematic studies of Kloading.
- Negligible MgAl₂O₄ contribution in NOx uptake at high temperature
- Drastic difference between 5 wt% and 10 wt%
- Higher loading than 10 wt% does not improve the activity.

Pacific Northwest NATIONAL LABORATORY

Summary of Ba vs. K Activity Comparisons

- K-based NSRs display enhanced performance high temperatures relative to Ba-based materials (well known)
- Use of MgAl₂O₄ support materials provide significant improvements in high temperature performance for both K- and Ba-based NSRs
- K-Pt/MgAl₂O₄ displays unusual dependence of performance on K-loading
- Comparison of morphology and morphology changes with Ba-based NSRs
- Understand issues of K-migration that may be a significant road-block to use of K-based NSR materials

Institute for INTERFACIAL CATALYSIS

Proudly Operated by Battelle Since 1965

NATIONAL LABORATORY

Multiple active Ba phases were identified using a variety of techniques including FTIR

FTIR spectra of NO₂ adsorbed on Ba(2, 8 or 10%)/Al₂O₃ samples

'Signatures' of these structures also evident in ¹⁵N NMR and TPD spectra.

Szailer, T.; Kwak, J.H.; Kim, D.H.; Szanyi, J.; Wang, C.M.; Peden, C.H.F., Catal. Today **114** (2005) 86.

Similar to Ba, FTIR Spectral Changes Consistent with Multiple K-oxide Phases

FTIR spectra of NO₂ adsorbed on K(2 or 10)/Al₂O₃ samples

nitrates → surface and bulk nitrates?

CATALYSIS

NATIONAL LABORATORY

$H_2O \text{ on } NO_2(300K)/8\%$ -BaO/Al₂O₃ at 300K

Chem. Com., 2007, 984.

Synchrotron TR-XRD confirms $Ba(NO_3)_2$ morphology changes upon H_2O adsorption

How about the effect of H₂O on K nitrate morphology?

H₂O effect on NO₂ adsorbed K(2)/Al₂O₃

H₂O effect on NO₂ adsorbed K(2)/Al₂O₃

Pacific Northwest

NATIONAL LABORATORY

institute for

INTERFACIAL

CATALYSIS

Summary of nitrate morphologies: Ba vs. K

- Loading effects: Both Ba and K form two types of nitrates species (bulk type and highly dispersed), depending on loading.
- H₂O effects: H₂O induces reversible changes in morphology between highly dispersed and bulk-type nitrates for both Ba and K.
- Morphology changes during nitrate formation and decomposition – work in progress…

Nitrate decomposition: Ba nitrates

"Surface" nitrates decompose at lower temperatures than "bulk" nitrates

In situ Synchrotron EXAFS/XANES and XRD

State-of-the-art *in-situ* synchrotron experiments performed at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. Specific techniques used include:

- X-ray absorption near-edge structure (XANES);
- Extended x-ray absorption fine structure (EXAFS); &
- Time-resolved x-ray diffraction (TR-XRD)

In-situ S XANES & Pt EXAFS

Institute for INTERFACIAL CATALYSIS

TR-XRD: During NO₂ TPD on BaO(20%)/Al₂O₃

Nano-crystalline (~5 nm) Ba(NO₃)₂

What happens to KNO₃ phase during decomposition? – KNO₃(20)/Al₂O₃

TR-XRD: decomposition of K(20)/Al₂O₃

TPD with NOx analyzer

K(20)/Al₂O₃: to 700 °C and NO₂ adsorption

Decomposition NO₂ adsorption

- At 350 °C, only Al₂O₃
- At 700 °C, KAI_xO_y phase formed.
- NO₂ transformed KAl_xO_y phase into rhombohedral KNO₃ phase (no orthorhombic phase).

Current mechanism: KNO₃ morphology changes

Summary and Conclusions

- Higher temperature performance for current commercial Babased NSR catalysts can be obtained by substituting K for Ba and/or the support material, alumina (Al₂O₃), for magnesium aluminate (MgAl₂O₄).
- 2. **Similarities**: Both the Ba- and K-based model NSR catalysts store NO_2 as 2 forms ("surface" and "bulk") of nitrates as a function of loading, and display similar and reversible changes between these two nitrate forms upon contact of H_2O .
- 3. **Differences**: There are significant differences in the decomposition pathways and morphology changes between these two NSR materials, originating from the different physicochemical properties of Ba(NO₃)₂ and KNO₃.

Institute for

INTERFACIAL

Proudly Operated by Battelle Since 1965

Pacific Northwest

Acknowledgments

U. S. DOE, Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program

Experiments performed in DOE's Environmental Molecular Sciences Laboratory located at PNNL

National Synchrotron Light Source located at Brookhaven National Laboratory

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Vehicle Technologies Program

