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Motivation

• Formation of NH3 and N2O creates problems during conventional lean 
NOx trap (LNT) operation:
− Trading one pollutant (NOx) for another

• N2O: potent greenhouse gas
• NH3: toxic, corrosive, can be oxidized back to NOx

− Reduction stoichiometry depends on product:

• N2O : reductant slip (CO and HC emissions)
• NH3 : incomplete regeneration or increased fuel penalty

• Optimization of NH3 formation essential for multi-component systems 
such as LNT-SCR

OH2NH2NO2 222 +→+  

OHONH1NO2 222 +→+  

OH2NH2H5NO2 232 +→+
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Prior Work
• Performed bench scale flow reactor experiments on Umicore GDI LNT 

monolith core sample (9th CLEERS Workshop, SAE 2006-01-3441)
− Short and long storage/reduction cycles (based on early version of 

CLEERS LNT focus group test protocol)
− Steady flow temperature sweeps

• Simultaneous flow of reactants (not switching)
• Ramped from <100°C to 500°C at 5°C/min under reactant flow 
• NOx/reductants: NO/H2, NO/CO, NO2/H2, NO2/CO
• Secondary reactants: NH3/O2, NH3/NO, NH3, N2O/CO, N2O/H2

• Larson & Chakravarthy developed a detailed microkinetic LNT 
regeneration mechanism based on the steady flow experiments (stay 
tuned for the next talk)
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Long storage/reduction cycles illustrate 
complicated product concentration profiles

Long cycle test – 2nd of 3 cycles, 200°C, 30,000 hr-1 space velocity  
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Proposed regeneration processes
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Current Objectives

• Identify reaction intermediates involved in regeneration process

• Validate regeneration mechanism where possible

• Topics for investigation:
1. Reduction of NO by CO
2. NOx storage/reduction cycles
3. Impact of sulfation on regeneration
4. NH3 oxidation
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Approach
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• In situ DRIFTS measurements 
− Catalyst T up to ~550°C
− Heated lines for >5% H2O
− capable of (slow) lean/rich cycling

• MIDAC FTIR spectrometer
− 2 Hz scan rate;  2 cm-1 resolution

• Harrick Barrel Ellipse DRIFT

• Umicore GDI LNT catalyst (CLEERS 
reference material)
− NOx storage: Ba
− Oxygen storage: CeO2

− Precious metals: Pt, Rh, Pd
• Cut single wall from degreened

monolith
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Reduction of NO by CO
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Overview for reduction of NO by CO
• Observations from bench experiments:

− Reduction product selectivity driven by NOx/reductant ratio
• stoichiometric for N2: primarily N2
• excess reductant: mostly NH3

• Key questions:
− Can we determine pathway for NH3 formation from NO + CO?
− Is mechanism consistent with observable intermediates?

• Relevant reactions from mechanism:
N* + CO* = NCO* H2O + CO = 2H* + CO2
NCO* + H2O* = NH2* + CO2 + * N* + H* = NH* ...

• DRIFTS experiments:
1. Reduced 500°C, cooled to experiment temperature under 0.5%H2
2. Sequentially exposed to reactant flows:

− 0.5%CO, then 0.5%CO/500ppmNO, back to 0.5%CO
− repeated with 5%H2O (subtracted clean H2O spectra)

3. Repeated at 200, 300, 400, 500°C
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• Peaks at 2225 and 1990 cm-1 correlate with loss and recovery of 
carbonate peaks at 1324 and 1569 cm-1; likely associated with NCO on 
oxides (CeO2, Al2O3) or storage material (Ba)

NO+CO form considerable isocyanate at 300°C
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NCO observed in all dry experiments

• NCO peaks increase from 200 to 300°C, then drop off with increasing 
temperature
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• Peak at 2163 much smaller; peaks at 2225 and 1990 cm-1 (on 
oxides/storage material?) not visible

Water hydrolyzes NCO at 300°C
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With H2O present, NCO decreases rapidly with 
increasing temperature

• Large drop in NCO from 200-300°C correlates with NH3 formation 
increase from steady flow bench experiments
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NOx storage/reduction cycles
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Overview for NOx storage/reduction cycles
• Key question:

− Are the intermediates observed during steady state experiments 
relevant to cyclic operation?

• DRIFTS experiments:
1. Reduced 500°C, cooled to experiment temperature under 0.5%H2

2. Peformed three cycle experiments (FTIR scan every 6 sec)

3. Repeated at 200, 300, 400°C

0.9%CO/5%CO2/5%H2O60 sRich
300ppmNO/10%O2/5%CO2/5%H2O360 sLeanCO
0.9%H2/5%CO2/5%H2O60 sRich
300ppmNO/10%O2/5%CO2/5%H2O390 sLeanH2

0.9%H2/5%H2O60 sRich
300ppmNO/10%O2/5%H2O390 sLeanH2 (no CO2)
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• NCO observed with both CO and H2 as reductant

CO* 2016NCO* 2163 

NCO observed during 300°C cycle experiments
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NCO observed during cycles at 200 & 300°C
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Impact of sulfation on regeneration
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Overview for impact of sulfation
• Observations from bench experiments:

− Large increase in NH3 slip with sulfur loading (Partridge, Choi, and 
Daw later today)

• Key question:
− Does sulfation impact the regeneration reduction reactions?

• DRIFTS experiments:
1. Reduced 500°C, cooled to 300°C under 0.5%H2

2. Cycled with H2 reductant
− lean: 300ppmNO/10%O2/5%CO2/5%H2O
− rich: 0.9%H2/5%CO2/5%H2O

3. Cycled with CO reductant
4. Exposed to 20 ppm SO2 15 min while cycling with CO

− ~15% reduction in storage capacity
5. Cycled with CO reductant
6. Cycled with H2 reductant
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Before and after SO2 exposure

• Decrease in NO3* & CO3* peaks corresponds to loss of ~15% active 
storage material
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No change observed in reduction behavior after 
light sulfation at 300°C for cycles with CO...
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...or cycles with H2 reductant
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NH3 oxidation
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Overview for NH3 oxidation
• Observations from bench experiments:

− NH3 oxidized by both O2 and NO over the LNT catalyst
− N2O formed from NH3 oxidation by O2 and NO

• Key question:
− Does NH3 react with NOx and O2 stored on catalyst surface?

• Relevant reactions from mechanism:

• DRIFTS experiments:
1. Reduced 500°C, cooled to experiment temperature under 0.5%H2

2. Exposed to oxidants for 5 minutes (10%O2 or 300ppmNO/10%O2)
3. Purged in inert gas for 5 minutes
4. Exposed to 500ppm NH3; FTIR scan every 15 seconds
5. Repeated at 200, 300, 400, 500°C

H* + O* = OH*
NH* = N* + H*N* + O* = NO*
NH2* = NH* + H*NH2* + NO* = N2O + 2H*
NH3* = NH2* + H*NH3* + O* = NH2* + OH*
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• At 300°C, NH3 reduces the adsorbed nitrates, regenerating the storage 
material; also observed at 200 and 400°C

NH3 reduces NOx stored on the catalyst surface
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• At 200°C, NH3 initially oxidized and stored as nitrite; eventually incoming NH3
eliminates oxidative capacity and reduces stored nitrites

• Also observed at 300 and 400°C; higher temperatures speed things up
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Conclusions
• Isocyanate:

− formed in large quantities in the absence of water
• some appears to be located on metal oxide components

− rapidly hydrolyzed by water, reducing surface concentration
• water appears to suppress NCO formation on metal oxides
• temperature where NCO diminished correlates with increased 

NH3 selectivity in bench experiments
− observed during cycling with both CO and H2 (on precious metals)
− sufficient evidence to leave NCO NH3 pathway in mechanism

• Light sulfation of the catalyst had no observable impact on reduction 
chemistry

• NH3 reacts with stored NOx to regenerate the LNT
• When NH3 encounters an oxidized surface, it

− is initially oxidized and stored as nitrite
− eventually depletes oxidative capacity and reduces the stored nitrite
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