

# **DRIFTS Investigation of LNT Regeneration**

HILL HALL HALL IN THE REAL OF THE REAL PROPERTY OF

Josh Pihl, Stuart Daw, Todd Toops

10<sup>th</sup> CLEERS Workshop Dearborn, Michigan May 2, 2007

### **Motivation**

- Formation of NH<sub>3</sub> and N<sub>2</sub>O creates problems during conventional lean NOx trap (LNT) operation:
  - Trading one pollutant (NOx) for another
    - N<sub>2</sub>O: potent greenhouse gas
    - NH<sub>3</sub>: toxic, corrosive, can be oxidized back to NOx
  - Reduction stoichiometry depends on product:

 $2 \text{ NO} + 2 \text{ H}_2 \rightarrow \text{N}_2 + 2 \text{ H}_2 \text{O}$  $2 \text{ NO} + 1 \text{ H}_2 \rightarrow \text{N}_2 \text{O} + \text{H}_2 \text{O}$  $2 \text{ NO} + 5 \text{ H}_2 \rightarrow 2 \text{ NH}_3 + 2 \text{H}_2 \text{O}$ 

- N<sub>2</sub>O : reductant slip (CO and HC emissions)
- NH<sub>3</sub> : incomplete regeneration or increased fuel penalty
- Optimization of NH<sub>3</sub> formation essential for multi-component systems such as LNT-SCR



## **Prior Work**

- Performed bench scale flow reactor experiments on Umicore GDI LNT monolith core sample (9<sup>th</sup> CLEERS Workshop, SAE 2006-01-3441)
  - Short and long storage/reduction cycles (based on early version of CLEERS LNT focus group test protocol)
  - Steady flow temperature sweeps
    - Simultaneous flow of reactants (not switching)
    - Ramped from <100°C to 500°C at 5°C/min under reactant flow</li>
    - NOx/reductants: NO/H<sub>2</sub>, NO/CO, NO<sub>2</sub>/H<sub>2</sub>, NO<sub>2</sub>/CO
    - Secondary reactants: NH<sub>3</sub>/O<sub>2</sub>, NH<sub>3</sub>/NO, NH<sub>3</sub>, N<sub>2</sub>O/CO, N<sub>2</sub>O/H<sub>2</sub>
- Larson & Chakravarthy developed a detailed microkinetic LNT regeneration mechanism based on the steady flow experiments (stay tuned for the next talk)



# Long storage/reduction cycles illustrate complicated product concentration profiles





### **Proposed regeneration processes**



# **Current Objectives**

- Identify reaction intermediates involved in regeneration process
- Validate regeneration mechanism where possible
- Topics for investigation:
  - 1. Reduction of NO by CO
  - 2. NOx storage/reduction cycles
  - 3. Impact of sulfation on regeneration
  - 4. NH<sub>3</sub> oxidation



## Approach

- In situ DRIFTS measurements
  - Catalyst T up to ~550°C
  - Heated lines for >5% H<sub>2</sub>O
  - capable of (slow) lean/rich cycling
- MIDAC FTIR spectrometer
  - 2 Hz scan rate; 2 cm<sup>-1</sup> resolution
- Harrick Barrel Ellipse DRIFT
- Umicore GDI LNT catalyst (CLEERS reference material)
  - NOx storage: Ba
  - Oxygen storage: CeO<sub>2</sub>
  - Precious metals: Pt, Rh, Pd
- Cut single wall from degreened monolith





# **Reduction of NO by CO**



# **Overview for reduction of NO by CO**

- **Observations from bench experiments:** 
  - Reduction product selectivity driven by NOx/reductant ratio
    - stoichiometric for  $N_2$ : primarily  $N_2$
    - excess reductant: mostly NH<sub>3</sub>
- **Key questions:** 
  - Can we determine pathway for NH<sub>3</sub> formation from NO + CO?
  - Is mechanism consistent with observable intermediates?
- Relevant reactions from mechanism:
  - $N^* + CO^* = NCO^*$  $NCO^* + H_2O^* = NH_2^* + CO2 + *$   $N^* + H^* = NH^* ...$

 $H_2O + CO = 2H^* + CO_2$ 

### **DRIFTS** experiments:

- 1. Reduced 500°C, cooled to experiment temperature under 0.5%H<sub>2</sub>
- 2. Sequentially exposed to reactant flows:
  - 0.5%CO, then 0.5%CO/500ppmNO, back to 0.5%CO
  - repeated with 5%H<sub>2</sub>O (subtracted clean H<sub>2</sub>O spectra)
- 3. Repeated at 200, 300, 400, 500°C









NCO peaks increase from 200 to 300°C, then drop off with increasing temperature

11





# With H<sub>2</sub>O present, NCO decreases rapidly with increasing temperature



 Large drop in NCO from 200-300°C correlates with NH<sub>3</sub> formation increase from steady flow bench experiments



# NOx storage/reduction cycles



# **Overview for NOx storage/reduction cycles**

### • Key question:

- Are the intermediates observed during steady state experiments relevant to cyclic operation?
- DRIFTS experiments:
  - 1. Reduced 500°C, cooled to experiment temperature under 0.5%H<sub>2</sub>
  - 2. Peformed three cycle experiments (FTIR scan every 6 sec)

| $H_2$ (no CO <sub>2</sub> ) | Lean | 390 s | 300ppmNO/10%O <sub>2</sub> /5%H <sub>2</sub> O                    |
|-----------------------------|------|-------|-------------------------------------------------------------------|
| States and                  | Rich | 60 s  | 0.9%H <sub>2</sub> /5%H <sub>2</sub> O                            |
| H <sub>2</sub>              | Lean | 390 s | 300ppmNO/10%O <sub>2</sub> /5%CO <sub>2</sub> /5%H <sub>2</sub> O |
|                             | Rich | 60 s  | 0.9%H <sub>2</sub> /5%CO <sub>2</sub> /5%H <sub>2</sub> O         |
| СО                          | Lean | 360 s | 300ppmNO/10%O <sub>2</sub> /5%CO <sub>2</sub> /5%H <sub>2</sub> O |
|                             | Rich | 60 s  | 0.9%CO/5%CO <sub>2</sub> /5%H <sub>2</sub> O                      |

3. Repeated at 200, 300, 400°C









# Impact of sulfation on regeneration



# **Overview for impact of sulfation**

- Observations from bench experiments:
  - Large increase in NH<sub>3</sub> slip with sulfur loading (Partridge, Choi, and Daw later today)
- Key question:
  - Does sulfation impact the regeneration reduction reactions?

#### • DRIFTS experiments:

- 1. Reduced 500°C, cooled to 300°C under 0.5%H<sub>2</sub>
- 2. Cycled with H<sub>2</sub> reductant
  - lean: 300ppmNO/10%O<sub>2</sub>/5%CO<sub>2</sub>/5%H<sub>2</sub>O
  - rich:  $0.9\%H_2/5\%CO_2/5\%H_2O$
- 3. Cycled with CO reductant
- 4. Exposed to 20 ppm SO<sub>2</sub> 15 min while cycling with CO
  - ~15% reduction in storage capacity
- 5. Cycled with CO reductant
- 6. Cycled with H<sub>2</sub> reductant







# No change observed in reduction behavior after light sulfation at 300°C for cycles with CO...



after 15 min 20ppm SO<sub>2</sub>





## ... or cycles with H<sub>2</sub> reductant





# **NH<sub>3</sub> oxidation**



# **Overview for NH<sub>3</sub> oxidation**

- Observations from bench experiments:
  - $NH_3$  oxidized by both  $O_2$  and NO over the LNT catalyst
  - $N_2O$  formed from  $NH_3$  oxidation by  $O_2$  and NO
- Key question:
  - Does  $NH_3$  react with NOx and  $O_2$  stored on catalyst surface?

#### • Relevant reactions from mechanism:

 $\begin{array}{ll} NH_{3}^{*} + O^{*} = NH_{2}^{*} + OH^{*} & NH_{3}^{*} = NH_{2}^{*} + H^{*} \\ NH_{2}^{*} + NO^{*} = N_{2}O + 2H^{*} & NH_{2}^{*} = NH^{*} + H^{*} \\ N^{*} + O^{*} = NO^{*} & NH^{*} = N^{*} + H^{*} \\ H^{*} + O^{*} = OH^{*} \end{array}$ 

#### • DRIFTS experiments:

- 1. Reduced 500°C, cooled to experiment temperature under 0.5%H<sub>2</sub>
- 2. Exposed to oxidants for 5 minutes  $(10\%O_2 \text{ or } 300\text{ppmNO}/10\%O_2)$
- 3. Purged in inert gas for 5 minutes
- 4. Exposed to 500ppm NH<sub>3</sub>; FTIR scan every 15 seconds
- 5. Repeated at 200, 300, 400, 500°C





 At 300°C, NH<sub>3</sub> reduces the adsorbed nitrates, regenerating the storage material; also observed at 200 and 400°C





- At 200°C, NH<sub>3</sub> initially oxidized and stored as nitrite; eventually incoming NH<sub>3</sub> eliminates oxidative capacity and reduces stored nitrites
- Also observed at 300 and 400°C; higher temperatures speed things up



# Conclusions

- Isocyanate:
  - formed in large quantities in the absence of water
    - some appears to be located on metal oxide components
  - rapidly hydrolyzed by water, reducing surface concentration
    - water appears to suppress NCO formation on metal oxides
    - temperature where NCO diminished correlates with increased NH<sub>3</sub> selectivity in bench experiments
  - observed during cycling with both CO and H<sub>2</sub> (on precious metals)
  - sufficient evidence to leave NCO NH<sub>3</sub> pathway in mechanism
- Light sulfation of the catalyst had no observable impact on reduction chemistry
- NH<sub>3</sub> reacts with stored NOx to regenerate the LNT
- When NH<sub>3</sub> encounters an oxidized surface, it
  - is initially oxidized and stored as nitrite
  - eventually depletes oxidative capacity and reduces the stored nitrite



## **Acknowledgements**

- Todd Toops and Stuart Daw for serving as my mentors
- Jae-Soon Choi, Jim Parks, and Bill Partridge for useful conversations

Funding provided by:

 U.S. Department of Energy, FreedomCAR and Vehicle Technologies Program

