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• Conventional census rules out performance dependence on length at a 
given space velocity
− Reacting system is governed by residence time (reciprocal of space 

velocity) and mass transfer coefficient 

at z*=0                              at z*=1

− Mass transfer coefficient is constant in a fully-developed laminar 
flow

• Significant difference in LNT performance data are often obtained 
under the same conditions by different labs (cf. John Hoard, 8th

CLEERS Workshop)
− Different experimental catalyst sizes are used at different labs
− No standard reactor size 
− Suspected as the culprit of LNT performance disparity

• Length effect issue needs to be addressed 
− To compare data from different sources 
− To develop commercial design criteria 
− To develop models

This work is undertaken to determine if/how 
monolith length affects LNT performance
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Approach: evaluation of core samples using 
well-controlled bench reactor 
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Two LNTs of different formulation and 
physical properties were evaluated 

• SCONOx
− EmeraChem LNT used in the power generating industry
− 200 cpsi cordierite brick washcoated with Pt/K/γ-Al2O3

• Umicore
− Umicore GDI LNT used by CLEERS LNT Focus Group
− 625 cpsi cordierite brick washcoated with Pt, Pd, Rh, Ba, CeO2, ZrO2, γ-

Al2O3 and etc.



5
OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Samples of 7/8’’ OD and 1’’, 2’’ and 3’’ long 
were evaluated at SV=30,000 h-1 using long 
and short cycles
Long-cycle Experiments:
• SCONOx

• Umicore

• Gas Analysis:
− NO/NOx (chemiluminescence detectors)
− NO2/N2O/NH3/CO/CO2/H2O (FTIR)

Temperatures: 200, 300 and 400°C
0.2% or 0.5% H2, 5% H2O, 5% CO2, balance N2

300 ppm NO, 10% O2, 5% H2O, 5% CO2, balance N2

Gas Composition

10 min
15 min

Time

Rich
Lean

Mode

Temperatures: 230, 325 and 500°C
0.4% H2, 5% H2O, 5% CO2, balance N2

300 ppm NO, 10% O2, 5% H2O, 5% CO2, balance N2

Gas Composition

10 min
15 min
Time

Rich
Lean

Mode
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Samples of 7/8’’ OD and 1’’, 2’’ and 3’’ long 
were evaluated at SV=30,000 h-1 using long 
and short cycles 
Short-cycle Experiments:
• SCONOx

• Umicore

• Gas Analysis:
− NO/NOx (chemiluminescence detectors)
− NO2/N2O/NH3/CO/CO2/H2O (FTIR)
− H2 (SpaciMS)

Temperatures: 200, 300 and 400°C
1% or 2% H2, 5% H2O, 5% CO2, balance N2

300 ppm NO, 10% O2, 5% H2O, 5% CO2, balance N2

Gas Composition

4 s
56 s

Time

Rich
Lean

Mode

Temperatures: 230, 325 and 500°C
1.4% or 3.4% H2, 5% H2O, 5% CO2, balance N2

300 ppm NO, 10% O2, 5% H2O, 5% CO2, balance N2

Gas Composition

5 s
60 s

Time

Rich
Lean

Mode
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SCONOx
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Three “identical” 7/8” OD x 1’’ long cores 
were selected as building blocks

• To evaluate and compare performance of 1’’, 2’’
and 3’’ long samples

• Experimental artifacts needed to be addressed 
for meaningful comparison
− Sample-to-sample variation
− Effect of channel misalignment and “discontinuity” on 

catalyst performance
− Develop “degreening” protocol for obtaining  

reproducible data of catalyst activity
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Performance of SCONOx is not affected by 
sample’s length in long-cycle experiments
Long-cycle experiments in 1” and 2” long samples with 0.2% H2 in rich phase
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NOx conversion efficiencies

Performance of SCONOx is affected by 
sample’s length in short-cycle experiments 
with partial regeneration (1% H2) 

73.8%

61.1%
400°C

83.6%

68.7%
300°C

67.4%

61.1%
200°C

2’’
1’’

Length T

• Largest difference of 15% in NOx
conversion is at 300°C

• Longer the sample better the 
performance
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NOx conversion efficiencies

Performance of SCONOx is not affected by 
sample’s length in short-cycle experiments 
with full regeneration (2% H2)
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Trend was further confirmed with 1”, 2” and 
3” long samples: performance in long cycling 
is not affected by sample’s length
Long-cycle experiments in 1”, 2” and 3” long samples at 300°C 
with 0.2% H2 in rich phase
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NOx conversion efficiencies

Trend was further confirmed with 1”, 2” and 3” long 
samples: performance in short cycling is affected by 
sample’s length with 1% but not with 2% H2 at 300°C
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• Performance in short-cycle experiments with full 
regeneration (2% H2) and in long-cycle experiments is 
not affected by monolith length

3 in = 2 in = 1 in

• Performance in short-cycle experiments with partial 
regeneration (1% H2) is affected by monolith length

2 in > 1 in & 3 in = 2 in

• Little difference in temperature profiles is observed: 
negligible thermal effect

SCONOx Performance vs. Length: Summary
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H2 Consumption Trends in 

Short-Cycle Experiments at 300°C

SCONOx

(measured with SpaciMS)
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More H2 is consumed in 1’’ than in 2’’ and 3’’
long samples
Short-cycle experiments with 1% and 2% H2 at 300°C

• With 1% H2, 100% is consumed in first half of 1’’ vs. 75% in 2’’ and 3’’
• With 2% H2, 80% is consumed in 1’’ vs. 60% in 2” and 3”
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Same trend in OSC experiments: more H2 is 
consumed in 1’’ than in 2’’ and 3’’ long samples

Short-cycle experiments without NO in the lean phase

1% or 2% H2, 5% H2O, 5% CO2, balance N2
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Lean/rich front back-mixing may contribute 
to significant reductant loss and in turn 
affects NOx conversion efficiency
• With 1% H2, 50% of H2 is consumed in the front half of 1’’

long sample compared to 18% in 2’’ and 3’’

• Different H2 consumption in OSC experiments indicates 
other mechanisms for H2 consumption might occur in 
addition to reaction with surface O2
− Catalytic reaction between H2 and O2 at the interface between the 

lean and rich phases; the extent of which depends on the degree 
of mixing at the lean/rich interface

− Higher back-mixing → higher H2 consumption → less amount of 
H2 available for reducing NOx → lower NOx conversion

− Similar H2 consumption in 2’’ and 3’’ indicates lesser degree of  
back-mixing with increasing flow rate (at a fixed SV and catalyst 
diameter, i.e., gas velocity or flow rate increases with increasing 
length)
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Difference in H2 consumption trends between 
1”, 2” and 3” disappears with neutral purge: 
evidence of different degree of back-mixing
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• In 1” long sample, ~35% of H2 is consumed by the 
catalytic oxidation at the lean/rich interface, 
compared to ~ 10% in longer samples, resulting in 
a reduction of 15% in NOx conversion in short-
cycle experiments with 1% H2

• If 2.5 moles of H2 are required to reduce 1 mole of 
inlet NO, 25-30% less availability of H2 would 
result in 10 to 14% decrease in NOx conversion, 
which is consistent with experimental data
− K2CO3 + 2NO + 1.5O2 → 2KNO3 + CO2
− 2KNO3 + 5H2 + CO2 → K2CO3 + N2 + 5H2O

Back-mixing is responsible for differences in 
NOx conversion between 1”, 2” and 3” long 
samples as a result of H2 loss
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Umicore
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NOx conversion efficiencies

Performance of Umicore is not affected by 
sample’s length in long-cycle experiments
Long-cycle experiments in 1”, 2” and 3” long samples with 0.4% H2 in rich phase
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NOx conversion efficiencies

Performance of Umicore is affected by 
sample’s length in short-cycle experiments 
with partial regeneration (1.4% H2) 
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Performance of Umicore is not affected by 
sample’s length in short-cycle experiments 
with full regeneration (3.4% H2)
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• Performance in short-cycle experiments with full 
regeneration (3.4% H2) and in long-cycle 
experiments is not affected by monolith length as 
in the case of SCONOx

3 in = 2 in = 1 in

• Performance in short-cycle experiments with 
partial regeneration (1.4% H2) is affected by 
monolith length

3 in > 2 in > 1 in

• Little difference in temperature profiles is 
observed: negligible thermal effect

Umicore Performance vs. Length: Summary
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H2 Consumption Trends in 

Short-Cycle Experiments

Umicore

(measured with SpaciMS)
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More H2 is consumed in shorter sample
Short-cycle experiments at 325°C with 1.4% & 3.4% H2 in 
rich phase

• With 1.4% H2, 100% is consumed in first quarter of 1’’ vs. 77% in 2’’ and 86% in 3’’
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Back-mixing is responsible for differences 
in NOx conversion between 1”, 2” and 3”
long samples as a result of H2 loss

• Different slopes in catalyst’s inlet H2 profiles suggest 
different degree of lean/rich front back-mixing which may 
contribute to significant reductant loss

• Average inlet H2 is different between samples
− 1.4%: 1.02%, 1.20% and 1.25% in 1’’, 2’’ and 3’’ long samples
− 3.4%: 2.89%, 3.22% and 3.23% in 1’’, 2’’ and 3’’ long samples
− Indicating H2 consumption prior to the catalyst

• Back-mixing depends on catalyst’s length or linear 
velocity
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Theoretical explanation of back-mixing
• Back-mixing is attributed to axial diffusion of chemical 

species in gas mixture (transport = bulk flow + diffusion)

• Dimensionless form of fluid phase mole balance equation 
for each species for dispersion with reaction

− The dimensionless group Da/UzL, referred to as the reactor 
dispersion number, measures the extent of axial dispersion
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• Similar results obtained from two LNT’s with different formulations 
• No significant length effect observed on SCONOx and Umicore in 

long and short-cycle experiments with full regeneration
• Significant monolith “length effect” on LNT performance in short-

cycle experiments with partial regeneration
− The longer the sample, the better the performance

• Observed “length effect” comes from different degrees of lean/rich 
front axial back-mixing at different linear velocities
− The lower the linear velocity (i.e. shorter LNT), the higher the back-mixing

• Higher back-mixing results in a higher reductant loss via oxidation 
by O2
− Implication in fuel economy and modeling
− Need to incorporate back-mixing effect into model

• Back-mixing could explain in part lab-to-lab discrepancy
− Different degrees of back-mixing depending on bench reactor switching 

valve/gas delivery system specifications
− In addition to other factors: degreening/pretreatment, sample-to-sample 

variation

Conclusions
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