

Effect of Length on LNT Performance

Vitaly Prikhodko, Jae-Soon Choi, Stuart Daw and Ke Nguyen Oak Ridge National Laboratory and University of Tennessee

10th DOE Crosscut Workshop on Lean Emissions Reduction Simulation May 2, 2007

This work is undertaken to determine if/how monolith length affects LNT performance

- Conventional census rules out performance dependence on length at a given space velocity
 - Reacting system is governed by residence time (reciprocal of space velocity) and mass transfer coefficient

$$-\frac{\partial C_{A}^{*}}{\partial z^{*}} - \tau k_{m,A} a_{c} (C_{A}^{*} - C_{As}^{*}) = \frac{\partial C_{A}^{*}}{\partial t^{*}} \qquad C_{A}^{*} = 1 \text{ at } z^{*} = 0 \quad \text{at } z^{*} = 1$$

- Mass transfer coefficient is constant in a fully-developed laminar flow
- Significant difference in LNT performance data are often obtained under the same conditions by different labs (cf. John Hoard, 8th CLEERS Workshop)
 - Different experimental catalyst sizes are used at different labs
 - No standard reactor size
 - Suspected as the culprit of LNT performance disparity
- Length effect issue needs to be addressed
 - To compare data from different sources
 - To develop commercial design criteria
 - To develop models

Approach: evaluation of core samples using well-controlled bench reactor

Two LNTs of different formulation and physical properties were evaluated

SCONO_x

- EmeraChem LNT used in the power generating industry
- 200 cpsi cordierite brick washcoated with Pt/K/γ-Al₂O₃

Umicore

- Umicore GDI LNT used by CLEERS LNT Focus Group
- 625 cpsi cordierite brick washcoated with Pt, Pd, Rh, Ba, CeO₂, ZrO₂, γ-Al₂O₃ and etc.

Samples of 7/8" OD and 1", 2" and 3" long were evaluated at SV=30,000 h⁻¹ using long and short cycles

Long-cycle Experiments:

SCONO_x

Mode	Time	Gas Composition
Lean	15 min	300 ppm NO, 10% O_2 , 5% H_2O , 5% CO_2 , balance N_2
Rich	10 min	0.2% or 0.5% H_2 , 5% H_2 O, 5% CO ₂ , balance N_2
Temperatures: 200, 300 and 400°C		

Umicore

Mode	Time	Gas Composition
Lean	15 min	300 ppm NO, 10% O ₂ , 5% H ₂ O, 5% CO ₂ , balance N ₂
Rich	10 min	0.4% H₂ , 5% H ₂ O, 5% CO ₂ , balance N ₂

Temperatures: 230, 325 and 500°C

• Gas Analysis:

- NO/NO_x (chemiluminescence detectors)
- NO₂/N₂O/NH₃/CO/CO₂/H₂O (FTIR)

Samples of 7/8" OD and 1", 2" and 3" long were evaluated at SV=30,000 h⁻¹ using long and short cycles

Short-cycle Experiments:

SCONO_x

Mode	Time	Gas Composition
Lean	56 s	300 ppm NO, 10% O_2 , 5% H_2O , 5% CO_2 , balance N_2
Rich	4 s	1% or 2% H₂ , 5% H ₂ O, 5% CO ₂ , balance N ₂
Temperatures: 200, 300 and 400°C		

Umicore

Mode	Time	Gas Composition
Lean	60 s	300 ppm NO, 10% O_2 , 5% H_2O , 5% CO_2 , balance N_2
Rich	5 s	1.4% or 3.4% H₂ , 5% H ₂ O, 5% CO ₂ , balance N ₂
and the second se		

Temperatures: 230, 325 and 500°C

• Gas Analysis:

- NO/NOx (chemiluminescence detectors)
- NO₂/N₂O/NH₃/CO/CO₂/H₂O (FTIR)
- H₂ (SpaciMS)

Three "identical" 7/8" OD x 1" long cores were selected as building blocks

- To evaluate and compare performance of 1", 2" and 3" long samples
- Experimental artifacts needed to be addressed for meaningful comparison
 - Sample-to-sample variation
 - Effect of channel misalignment and "discontinuity" on catalyst performance
 - Develop "degreening" protocol for obtaining reproducible data of catalyst activity

Performance of SCONO_x is not affected by sample's length in long-cycle experiments

Length	200°C	300°C	400°C
1"	21.5%	36.0%	33.2%
2"	24.5%	36.5%	33.1%

Performance of SCONO_x is affected by sample's length in short-cycle experiments with partial regeneration (1% H₂)

- Largest difference of 15% in NO_x conversion is at 300°C
- Longer the sample better the performance

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

NOx conversion efficiencies

ength	200°C	300°C	400°C
1"	61.1%	68.7%	61.1%
2"	67.4%	83.6%	73.8%

Performance of SCONO_x is not affected by sample's length in short-cycle experiments with full regeneration (2% H₂)

NOx conversion efficiencies

Length	200°C	300°C	400°C
1"	58.5%	89.2%	86.0%
2"	57.5%	<mark>91.0%</mark>	86.6%

Trend was further confirmed with 1", 2" and 3" long samples: performance in long cycling is not affected by sample's length

Long-cycle experiments in 1", 2" and 3" long samples at 300°C with 0.2% H_2 in rich phase

Observed difference is within experimental uncertainty

NOx conversion efficiencies

Length	300°C
1"	25.4%
2"	26.4%
3"	29.1%

Trend was further confirmed with 1", 2" and 3" long samples: performance in short cycling is affected by sample's length with 1% but not with 2% H₂ at 300°C

SCONO_x Performance vs. Length: Summary

 Performance in short-cycle experiments with full regeneration (2% H₂) and in long-cycle experiments is not affected by monolith length

3 in = 2 in = 1 in

- Performance in short-cycle experiments with partial regeneration (1% H₂) is affected by monolith length 2 in > 1 in & 3 in = 2 in
- Little difference in temperature profiles is observed: negligible thermal effect

H₂ Consumption Trends in Short-Cycle Experiments at 300°C SCONO_x (measured with SpaciMS)

More H₂ is consumed in 1" than in 2" and 3" long samples

Short-cycle experiments with 1% and 2% H₂ at 300°C

- With 1% H₂, 100% is consumed in first half of 1" vs. 75% in 2" and 3"
- With 2% H₂, 80% is consumed in 1" vs. 60% in 2" and 3"

Same trend in OSC experiments: more H₂ is consumed in 1" than in 2" and 3" long samples

Short-cycle experiments without NO in the lean phase

Lean/rich front back-mixing may contribute to significant reductant loss and in turn affects NO_x conversion efficiency

- With 1% H₂, 50% of H₂ is consumed in the front half of 1" long sample compared to 18% in 2" and 3"
- Different H₂ consumption in OSC experiments indicates other mechanisms for H₂ consumption might occur in addition to reaction with surface O₂
 - Catalytic reaction between H₂ and O₂ at the interface between the lean and rich phases; the extent of which depends on the degree of mixing at the lean/rich interface
 - Higher back-mixing \rightarrow higher H₂ consumption \rightarrow less amount of H₂ available for reducing NO_x \rightarrow lower NO_x conversion
 - Similar H₂ consumption in 2" and 3" indicates lesser degree of back-mixing with increasing flow rate (at a fixed SV and catalyst diameter, i.e., gas velocity or flow rate increases with increasing length)

Difference in H₂ consumption trends between 1", 2" and 3" disappears with neutral purge: evidence of different degree of back-mixing

U. S. DEPARTMENT OF ENERGY

Back-mixing is responsible for differences in NO_x conversion between 1", 2" and 3" long samples as a result of H₂ loss

- In 1" long sample, ~35% of H₂ is consumed by the catalytic oxidation at the lean/rich interface, compared to ~ 10% in longer samples, resulting in a reduction of 15% in NO_x conversion in short-cycle experiments with 1% H₂
- If 2.5 moles of H₂ are required to reduce 1 mole of inlet NO, 25-30% less availability of H₂ would result in 10 to 14% decrease in NO_x conversion, which is consistent with experimental data

 $- \text{K}_2\text{CO}_3 + 2\text{NO} + 1.5\text{O}_2 \rightarrow 2\text{KNO}_3 + \text{CO}_2$

 $-2\mathsf{KNO}_3+5\mathsf{H}_2+\mathsf{CO}_2\to\mathsf{K}_2\mathsf{CO}_3+\mathsf{N}_2+5\mathsf{H}_2\mathsf{O}$

Umicore

Performance of Umicore is not affected by sample's length in long-cycle experiments

Performance of Umicore is affected by sample's length in short-cycle experiments with partial regeneration (1.4% H₂)

Performance of Umicore is not affected by sample's length in short-cycle experiments with full regeneration (3.4% H₂)

Umicore Performance vs. Length: Summary

 Performance in short-cycle experiments with full regeneration (3.4% H₂) and in long-cycle experiments is not affected by monolith length as in the case of SCONO_x

3 in = 2 in = 1 in

 Performance in short-cycle experiments with partial regeneration (1.4% H₂) is affected by monolith length

3 in > 2 in > 1 in

• Little difference in temperature profiles is observed: negligible thermal effect

H₂ Consumption Trends in Short-Cycle Experiments Umicore (measured with SpaciMS)

More H₂ is consumed in shorter sample

Short-cycle experiments at 325°C with 1.4% & 3.4% $\rm H_2$ in rich phase

• With 1.4% H₂, 100% is consumed in first quarter of 1" vs. 77% in 2" and 86% in 3"

Back-mixing is responsible for differences in NO_x conversion between 1", 2" and 3" long samples as a result of H_2 loss

- Different slopes in catalyst's inlet H₂ profiles suggest different degree of lean/rich front back-mixing which may contribute to significant reductant loss
- Average inlet H₂ is different between samples
 - 1.4%: 1.02%, 1.20% and 1.25% in 1", 2" and 3" long samples
 - 3.4%: 2.89%, 3.22% and 3.23% in 1", 2" and 3" long samples
 - Indicating H₂ consumption prior to the catalyst
- Back-mixing depends on catalyst's length or linear velocity

Theoretical explanation of back-mixing

- Back-mixing is attributed to axial diffusion of chemical species in gas mixture (transport = bulk flow + diffusion)
- Dimensionless form of fluid phase mole balance equation for each species for dispersion with reaction

$$\frac{D_{a}}{U_{z}L}\frac{\partial^{2}C_{A}^{*}}{\partial z^{*2}} - \frac{\partial C_{A}^{*}}{\partial z^{*}} - \frac{L}{U_{z}}k_{m,A}a_{c}\left(C_{A}^{*} - C_{As}^{*}\right) = \frac{\partial C_{A}^{*}}{\partial t^{*}}$$
$$\left(-\frac{D_{a}}{U_{z}L}\frac{\partial C_{A}^{*}}{\partial z^{*}} + \frac{\partial C_{A}^{*}}{\partial z^{*}}\right)_{0^{-}} = \left(-\frac{D_{a}}{U_{z}L}\frac{\partial C_{A}^{*}}{\partial z^{*}} + \frac{\partial C_{A}^{*}}{\partial z^{*}}\right)_{0^{+}} \text{ at } z^{*} = 0$$
$$\frac{\partial C_{A}^{*}}{\partial z^{*}} = 0 \quad \text{ at } z^{*} = 1$$

 The dimensionless group D_a/U_zL, referred to as the reactor dispersion number, measures the extent of axial dispersion

Conclusions

- Similar results obtained from two LNT's with different formulations
- No significant length effect observed on SCONO_x and Umicore in long and short-cycle experiments with full regeneration
- Significant monolith "length effect" on LNT performance in shortcycle experiments with partial regeneration
 - The longer the sample, the better the performance
- Observed "length effect" comes from different degrees of lean/rich front axial back-mixing at different linear velocities
 - The lower the linear velocity (i.e. shorter LNT), the higher the back-mixing
- Higher back-mixing results in a higher reductant loss via oxidation by O₂
 - Implication in fuel economy and modeling
 - Need to incorporate back-mixing effect into model
- Back-mixing could explain in part lab-to-lab discrepancy
 - Different degrees of back-mixing depending on bench reactor switching valve/gas delivery system specifications
 - In addition to other factors: degreening/pretreatment, sample-to-sample variation

Acknowledgements

- DOE Office of FreedomCAR & Vehicle Technologies
- EmeraChem/Umicore
- Stuart Daw, Ke Nguyen, Jae-Soon Choi, Josh Pihl, Todd Toops
- Fuels, Engines, and Emissions Research (FEERC) group of Oak Ridge National Laboratory

