Kinetic modeling studies of CO oxidation in the presence of H₂ over Pt/Rh/Al₂O₃ catalysts

2011 DOE Crosscut Workshop on Lean Emissions Reduction Simulation *April 2011 – Dearborn, MI*

Nikola Rankovic Dr. André Nicolle Mr. David Berthout Prof. Patrick Da Costa

- Research drivers and objectives
- Kinetic Modeling in the IFP Exhaust library
- Modeling strategy
 - Assessing CO oxidation on Pt/Rh/Al₂O₃ in the presence of H₂
 - Globalization: from microkinetics to global kinetic rates
- Conclusions & perspectives

Curbing nitrogen emissions is a central environmental challenge for the twenty-first century [Sutton et al.]

Sutton et al. Nature, April 2011, Copyright © 2011, Nature Publishing Group

- Long-term goal: understanding and modeling the fundamental chemistry involved in the LNT operating cycle
 - **NO oxidation over Pt/Al₂O₃**
 - **NOx storage over Ba/Al₂O₃**
 - Pt-Ba interactions: spillover

- **CO and H₂ oxidation over Pt/Al₂O₃**
- More complex catalyst formulations: Pt-Rh/Al₂O₃ and Pt-Rh/CeO₂/Al₂O₃
- Hydrocarbon oxidation chemistry
- Nitrate regeneration and NOx release
- Sulfur poisoning

Outlook 2012

After-treatment modeling @ IFPEN

Multiscale approach

Reactive system complexity

Global (AMESim IFP Exhaust) Aftertreatment system conception

Time

cm-dm

μm-mm

Nikola Rankovic - 2011 DOE Crosscut Workshop on Lean Emissions Reduction Simulation - April 21st, 2011 - Dearborn, MI

cm-dm

The IFP-Exhaust library

Library for after-treatment system modeling

Main components :

- Sensors / sources
- Throttle, pipes
- Volumes, manifolds
- Heat transfers models
- 3-way catalyst (3WC)
- Diesel Oxidation Catalyst (DOC)
- Diesel Particulate Filter (DPF)
- Lean NOx-Trap (LNT)
- Selective Catalytic Reduction (SCR) system

September 2014								
⊅	B	Rcc.	– <mark>exhaust</mark> – gas ≻ props	¥	Ą	ŝ	+	Ġ
\$	Ô	À		(⊨.∉.ž) ↑↑↑↑	Ô	¢	Ô	٩
₽		gas analyzer →		4	Ð	تربع ا	*	*
÷	উ	- <u>-</u>	**	e t	A A A A A A A A A A A A A A A A A A A	at Cp		den service
- DPF-								
 								<u></u> lose

Kinetic model validation for various experimental configurations:

- **Macro-mixing properties**
 - N 0D reactors in series: axial dispersion accounted for (pseudo-1D approach)

CO oxidation on Pt/Al₂O₃: microkinetic scheme

Elementary reactions compiled from the literature data and adjusted to fit different experiments

CO oxidation on Pt/Al₂O₃: global scheme

Globalization strategy:

Rate analyses showed the rate-determining step over a wide temperature range is the surface CO-Pt oxidation

 $CO-Pt + O-Pt \rightarrow CO_2-Pt + Pt$

Developing a Langmuir-Hinshelwood-type oxidation rate based on microkinetic parameters:

$$r_{CO,oxid} = \frac{k_{glob} (K_{CO} x_{CO})^{\alpha} (K_{O_2} x_{O_2})^{\beta}}{\left[1 + (K_{CO} x_{CO})^{\alpha} + (K_{O_2} x_{O_2})^{\beta}\right]^{\gamma}}$$

To IFP Exhaust library

 k_{glob} – global rate constant K_{CO} – equilibrium constant for CO adsorption K_{O2} – equilibrium constant for O₂ adsorption

H₂ oxidation on Pt/Al₂O₃: microkinetic scheme

Nikola Rankovic - 2011 DOE Crosscut Workshop on Lean Emissions Reduction Simulation - April 21st, 2011 - Dearborn, MI

$CO-H_2$ interplay on Pt/Al₂O₃

- Microkinetic scheme (18 elementary steps):
 - **CO-Pt oxidation by HO-Pt to CO₂-Pt**
 - **COOH-Pt and HC-(OPt)**₂ formation
- Validation against water-gas shift data (Wheeler *et al.*)

$CO-H_2$ interplay on Pt/Al₂O₃

- Microkinetic scheme (18 elementary steps):
 - **CO-Pt** oxidation by HO-Pt to CO₂-Pt
 - **COOH-Pt and HC-(OPt)**₂ formation
- Validation against water-gas shift data (Wheeler *et al.*)

Impact of H₂ on CO light-off temperatures

Microkinetic scheme:

Hydrogen-dependent CO desorption:

 $\mathbf{CO} + \mathbf{Pt} \rightleftharpoons \mathbf{CO} - \mathbf{Pt} \quad E_{act} = E_{act}^0 (1 - \alpha \, \Theta_{H-Pt})$

- **Global scheme:**
 - **CO** consumption by an intermediary HO-Pt species:

 $CO-Pt + HO-Pt \implies CO_2-Pt + H-Pt$

$$r_{CO,oxid} = \frac{k_{glob} \left(K_{CO} x_{CO} \right)^{\alpha} \left(K_{O_2} x_{O_2} \right)^{\beta} + k_{H_2} \left(K_{H_2} x_{H_2} \right)^{\delta}}{\left[1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{\alpha} + \left(K_{O_2} x_{O_2} \right)^{\beta} \right]^{\gamma}} \longrightarrow \left[\frac{1}{1 + \left(K_{CO} x_{CO} \right)^{$$

To IFP Exhaust library

 k_{H2} and K_{H2} obtained directly from microkinetic data

Impact of H₂ on CO light-off temperatures

Microkinetic model (10 elementary steps) used for the conception of a global Langmuir-Hinshelwood rate law

CO-H₂ interplay on Rh/Al₂O₃

Microkinetic model (18 elementary steps) used for the conception of a global Langmuir-Hinshelwood rate law

Conclusions & perspectives

- Detailed kinetic models for CO oxidation in the presence of H₂ were conceived for Pt/Al₂O₃ and Rh/Al₂O₃ model catalysts
- Globalization strategies allowed transposing microkinetic data directly into global models
- Assembling Pt and Rh blocks for simulating bimetallic catalytic formulations
- **Toward more complex supports: effect of CeO₂ and ZrO₂**

Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources

Innovating for energy

www.ifpenergiesnouvelles.com

Literature cited

Sutton, M. et al. Nature, April 2011
Rankovic, N. et al. Submitted to Applied Catalysis B: Environmental (2011)
Salomons, S. et al. Catal. Today, 117 (2006) 491-497
Rinnemo, M. et al. Combustion and Flame 111 (1997) 312-326.
Försth, M. et al, Catalysis Letters 66 (2000) 63-69.
Wheeler C. et al. Journal of Catalysis 223 (2004) 191-199.
Cai, Y. et al. Journal of Catalysis 161 (1996) 123-131.
Ito, S. I. et al. Catalysis Today 57 (2000) 247-254.