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Introduction

• Rob Middleton: New Ph.D. Student working on catalyst modeling

– About 1 year into study of catalysts

– Work partially supported by Michigan 21st Century Jobs Fund

• Focus on NO Oxidation as it is the rate limiting step for LNT lean 

phase operation

• Literature seems to be sparse on comparisons of varying catalysts 

between large groups
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Objective

• Correlate global kinetic LNT model parameters to catalyst 

formulation and loading

• Goal is to reduce parameter fitting time for new catalysts

– Hold as many terms constant as possible

– Pick good initial values for non-constant terms

• Useful for improving formulations / performance
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Existing Catalyst Model

• Model developed by Depcik, Assanis, Bevan
– A one-dimensional lean NOX trap model with a global kinetic mechanism 

that includes NH3 and N2O, Int. J. Engine Res. Vol. 9, 2008

• Uses custom C++/Fortran code
– Optimization of parameters performed via MATLAB (fmincon)

jsjg

ajmjgjg
CC

Gk

x

C
u

t

C
,,

,,,

mg

aggg

gpg TT
Gh

x

T
u

t

T
c

1
,

11
,,

,, jca

jsjg

ajmjs RG
CC

Gk

dt

Cd

m md s

dt



2

2
11 1 1

NM
g am m ca i m

m m m g m j j

j cat

h GdT T G Q
c T T R h q

dt x V


Gas Species:

Gas Energy:

Fluid Motion:

Surface Intermediates:

Surface Energy:



5

Existing Catalyst Model

• NO Oxidation reaction

• Origin of Inhibition terms:

– NO site occupancy from Voltz (1973)

– H2O estimated functional dependence from literature
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Method

• Used literature data

– 13 papers surveyed,  25 sets of data

– 10 different catalyst formulations, varying loading / 

dispersion

• Al2O3-CeO-SiO2 supports

• With and without Barium

• Pd, Pt and Rh as PGM

• Some papers only partially report the reactor setup

– Assumptions are needed for simulation
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Method

• Optimize k,  E,  KNO,  HNO,  KH2O,  HH2O for all data

– Analyze KNO,  HNO,  KH2O,  HH2O

– Hold values constant

• Optimize k,  E using constant values for inhibition

– Look for trends in E

– Hold E constant – either globally or per material

• Optimize k alone using constant values for other terms

– Look for trends in k

– Compare trends to those in the literature
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Our Assumptions

• Literature results can be replicated with a monolith

– Used the geometry from Olsson ‘99 (clearest definition)

• Inlet velocity is constant

• Flow rates STP

• Assumptions make it hard to compare pre-exponentials

– Focus on trends under the same set of assumptions

– Benard ‘05 shows the effect of Pt dispersion

– Huang ‘01 shows the effect of precious metal

• Can still compare activation energies and inhibition terms
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Optimizing All 6 Parameters

• The model matches experimental results well

– Even matches catalysts with unclear descriptions requiring many 

assumptions

– Yentikakis ‘05 has varying flow rates, crushed powder

– Rodrigues ‘00 has no geometry reported – no reactor type
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Averaging the NO Inhibition

• KNO is less than reported by Voltz

– Large variations seen in KNO and HNO

– Ideally one HNO per material 

and KNO correlated to loading

– Used average values:

• KNO = 4.7 x 105

• HNO = 41.3 [KJ/mol]
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Averaging the H2O Inhibition

• No literature results for this term

– Only 4 data sets

– Negative activation energy

– Used average values:

• KH2O = 1.18 

• HH2O = -9.7 [KJ/mol]
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Method

• Optimize k,  E,  KNO,  HNO,  KH2O,  HH2O for all data

– Analyze KNO,  HNO,  KH2O,  HH2O

– Hold values constant

• Optimize k,  E using constant values for inhibition

– Look for trends in E

– Hold E constant - globally

• Optimize k alone using constant values for other terms

– Look for trends in k

– Compare trends to those in the literature

KNO = 4.7 x 105

HNO = 41.3 [KJ/mol]

KH2O = 1.18

HH2O = -9.7 [KJ/mol]

E = 39.72 [KJ/mol]
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Change in Accuracy with Constant Terms

• Reducing the number of fit parameters does not 

adversely impact the quality of the results

– Least squares fit increases between ~0.1/pt and 20-40/pt

– Average increase of 8/pt

• Results are within the

expected error from

reading the literature data

– LSQ decreased from

3.5/pt  to 3.34/pt

– Within ± 25 ppm (5% inlet)
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Change in Accuracy with Constant Terms

• From Kandylas ‘02:

– LSQ nearly constant at 55 ppm total

– Within ± 15ppm (5% of inlet flow)

• From Yentikakis ‘05:

– LSQ increases from 150 to 240 ppm

– Within ± 100ppm (10% of inlet flow)

• Reducing the number of fit 

parameters from 6 to 1 

decreased the model accuracy 

by only 5-15%

– The optimization search space 

decreased by 5 dimensions

– Fit time decreased from ~5 hours to 

less than 1hour
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Effect of Dispersion and Metal Selection

• As a reality check …

– Under the same assumptions

– Can we match literature trends?

• Benard ‘05 – Pt dispersion

– Pt-Al2O3 – same Pt loading

– Higher dispersion decreases 

activity

– Matches the literature

– Reportedly due to Pt-O formation

• Huang ’01 – metal selection

– Activity: Rh > Pt > Pd

– Matches the literature
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Lessons Learned

• Model can fit experimental data well over a wide range of 

catalysts

• Parameter optimization speed can be increased without 

significant decrease in accuracy  by using average 

inhibition values

• Method looks promising – will continue to add data

– From the literature

– In-house via reactor bench

• Many assumptions are needed to use literature data
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