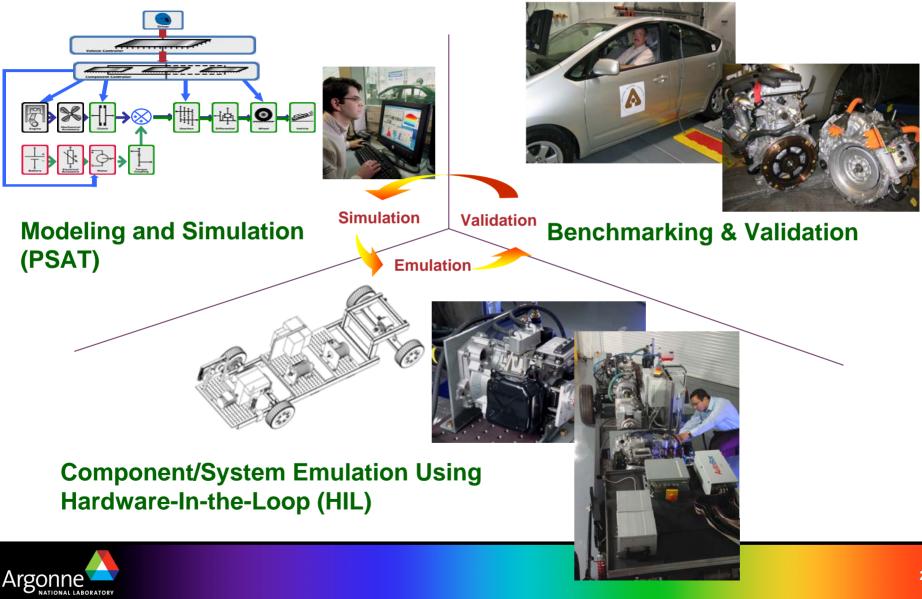
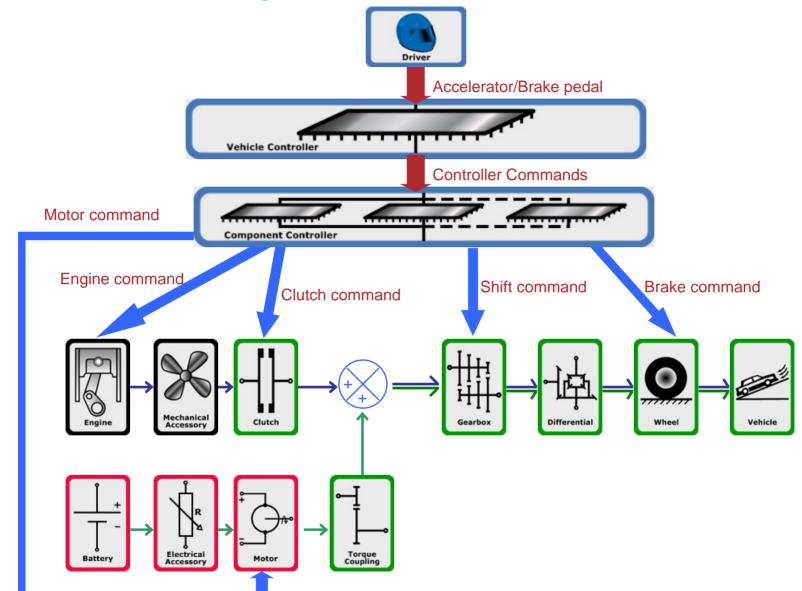
Integration of a Lean NOx Trap Model and an Engine map into PSAT

May 1, 2007 10th DOE CLEERS workshop University of Michigan, Dearborn, MI

Aymeric Rousseau Argonne National Laboratory


Kalyana Chakravarthy, Zhiming Gao, Stuart Daw & Johney Green OakRidge National Laboratory

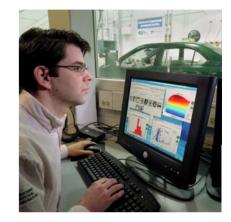


ANL Capabilities Designed for Vehicle Systems Analysis

Forward Modeling Provides Accurate Results

PSAT Simulations Support R&D and Management Decisions

- After a thorough assessment, PSAT has been selected in 2004 as the primary vehicle model for all FreedomCAR and 21 CTP activities by the U.S.DOE, stating that "All future code development and enhancements for OFCVT shall focus on PSAT and PSAT-PRO"
- PSAT has been awarded a R&D100 Award in 2004 represented to the 100 most technologically significant new products and processes introduced into the market each year.


PSAT has been awarded a Technology Transfer Award in 2007

"... We need a model that's intuitive, easy to use, and provides accurate results. PSAT gives us that." Randy Yost - GM Engineering Specialist

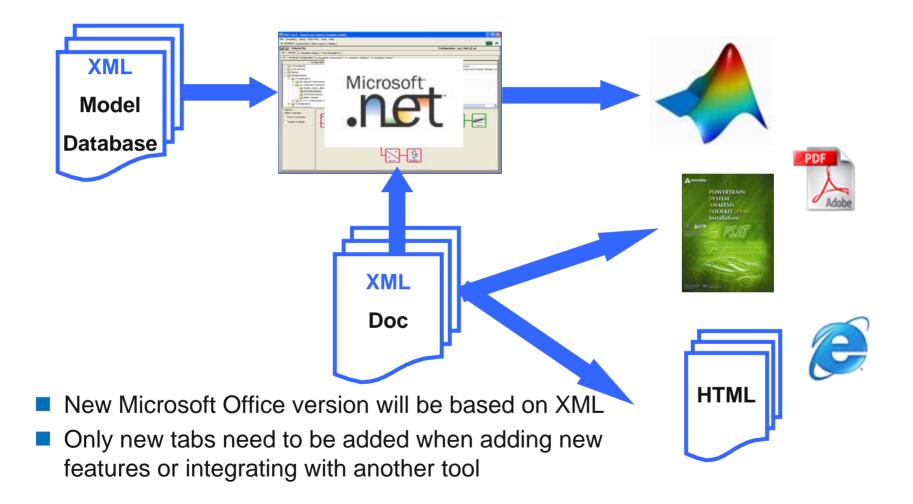
Developed to meet the requirements of automotive engineering throughout the development process

- Forward-looking model
- Wide range of vehicle applications from light to heavy duty
- Unrivaled number of predefined configurations
- Easy implementation of proprietary data, component models, control strategies or drive cycles
- Easy to use Graphical User Interface
- Possibility to use the control strategies for Hardware-in-the-Loop / Software-in-the-Loop
- Designed for co-simulation environment

PSAT v6.0 - Powertrain System Analysis toolkit		CO
le Sinulation Setup PSAT-PRO Units Help @ Sinulation Import Data Data Analysis Matteb		III 4
Vehicle File:		Configuration: par 2ed_p2.au
I. Vehicle 2. Serulation Setup 3. Run Serulations		
1. Drivetrain Configuration 2. Drivetrain Components 3. Control	roler / Strategy 4. Sinula	ation Output
Configuration	Configuration List	Description
····································	[99] (2016) β2 (301 (99) (2016) β2 (301) (2016) 4	2 wheek-aking pre-brancessons parallel configuration with aduntids transmission 3 wheek-aking pre-brancessons parallel configuration with aduntids transmission and 2 energy storage to
Colore Mark Carality Power Canada Tange Casing		

Different Users Have Different Needs

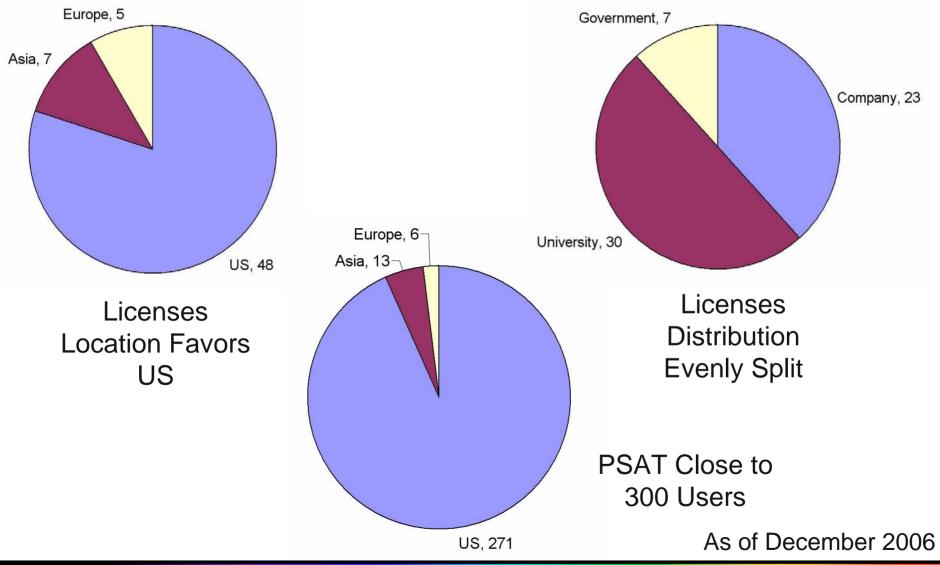
Validated complete vehicle models
Focused on fuel economy and performance
Evaluate component in vehicle system context
Evaluate fuel economy potential of future technologies (e.g. goals)


Implement their own models/data/controls
Also interested in drive quality & emissions
Need to have different levels of modeling
Interested in software architecture & postprocessing tools

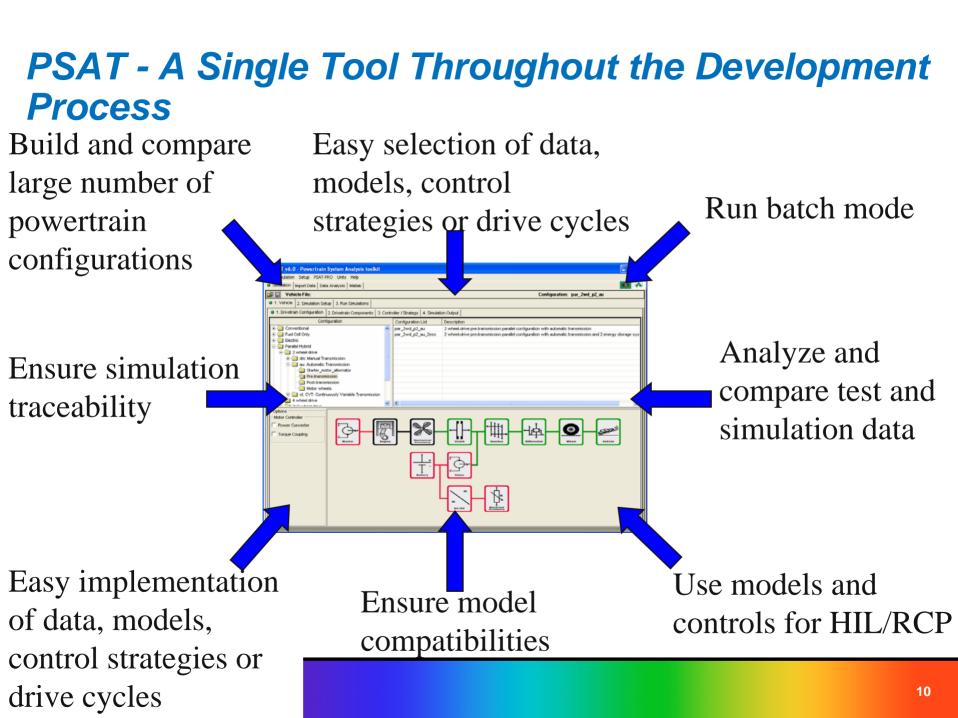
Suppliers

 Implement their component model / subsystems (reuse rest of PSAT models)
 Interested in software architecture & postprocessing tools

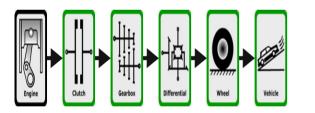
PSAT Architecture Designed to Suit All Users Needs

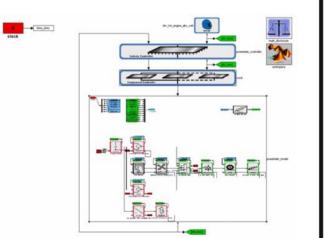


Large User Database Continuously Increasing



Numerous US Companies are Using PSAT

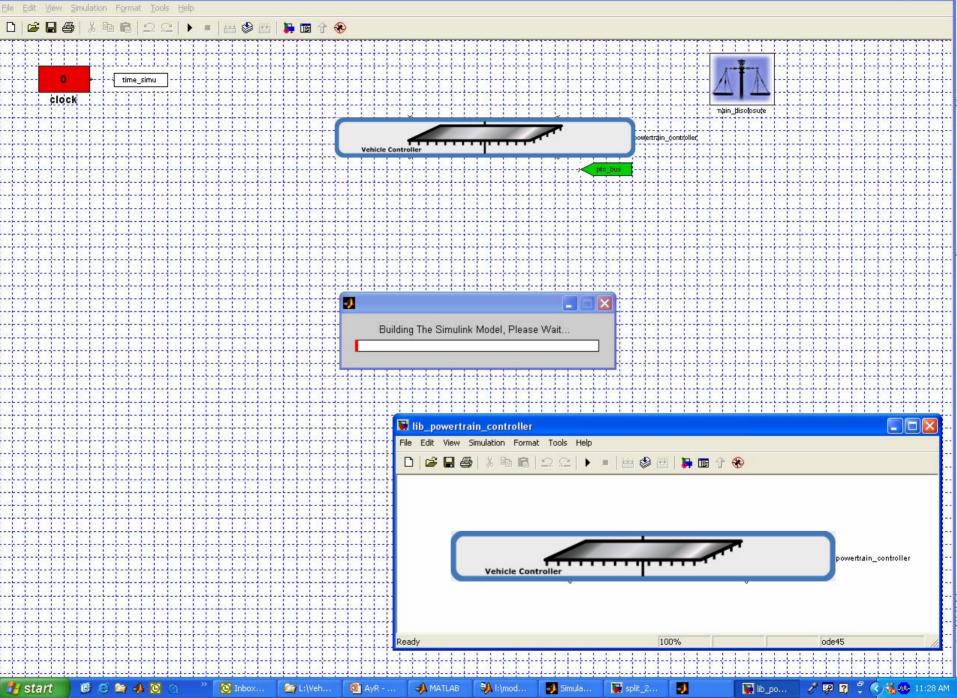


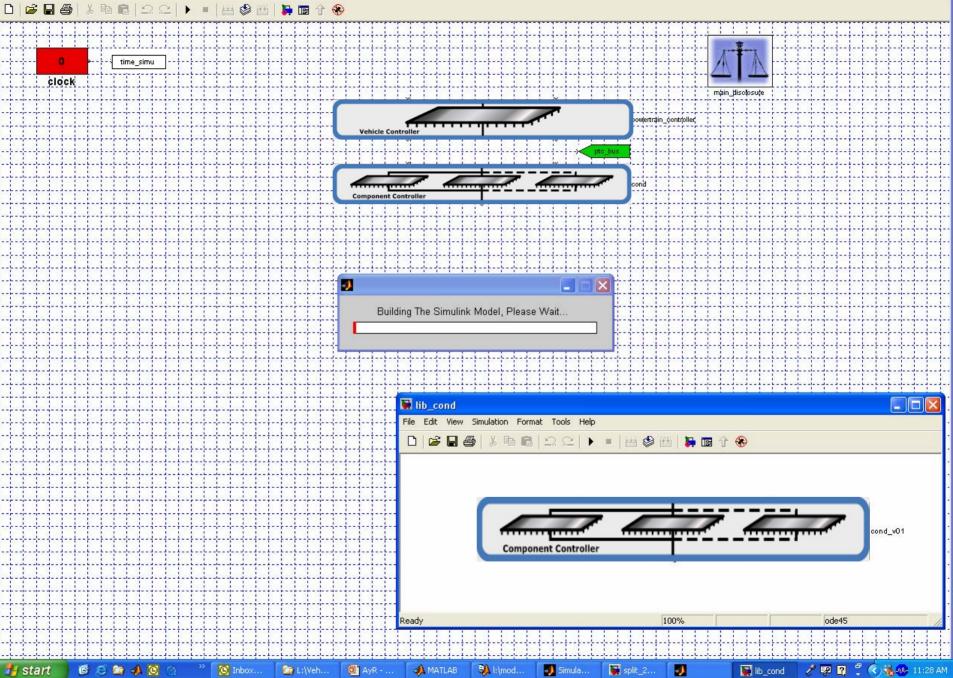


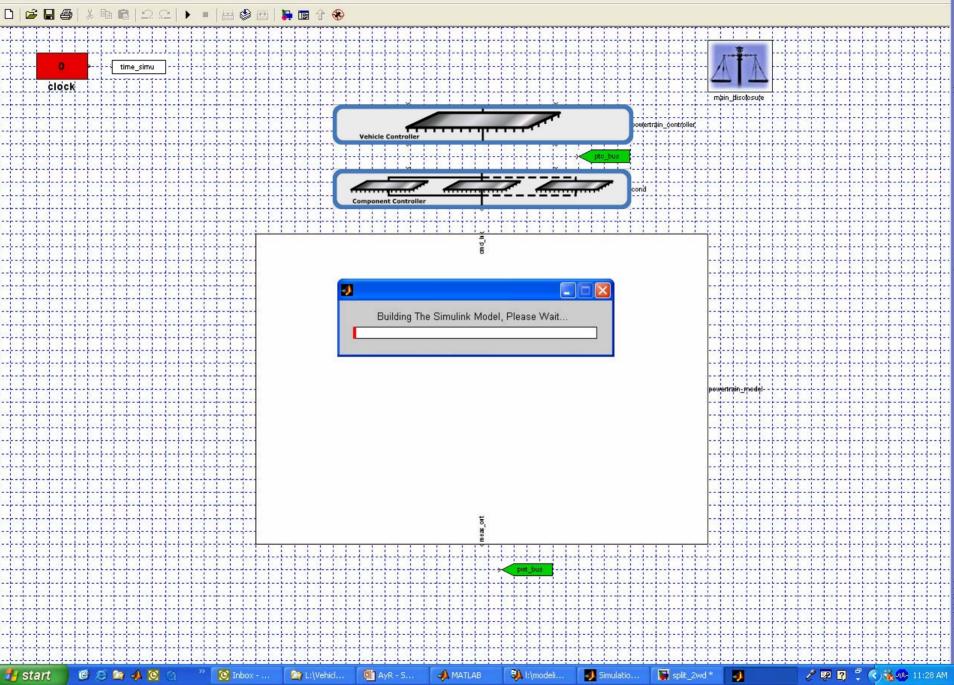
Large Number of Configurations Achieved Through Automatic Building

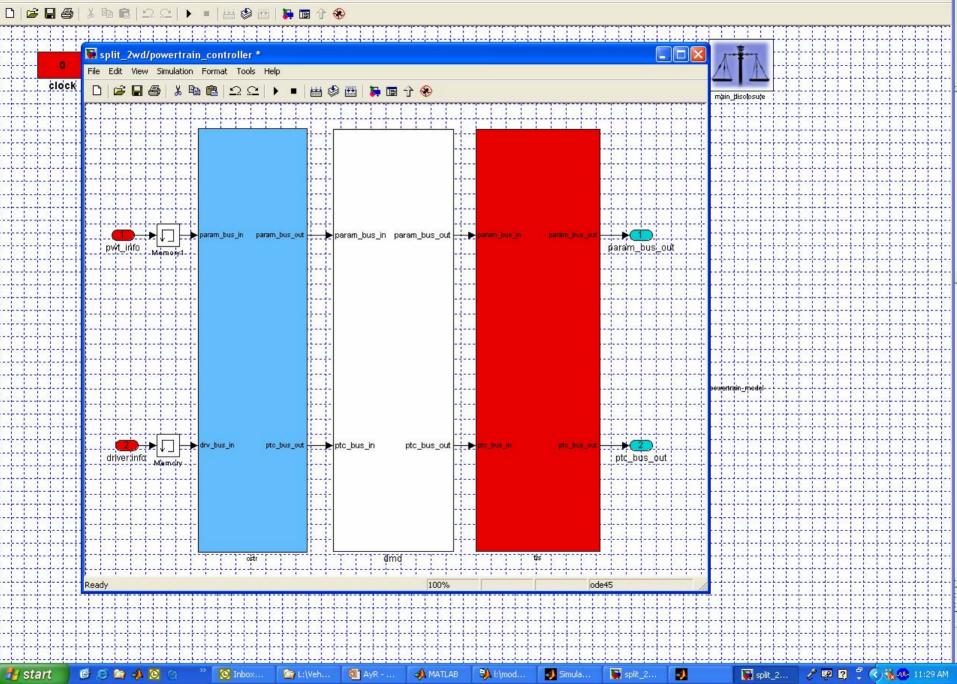
Option #1 Drag & Drop

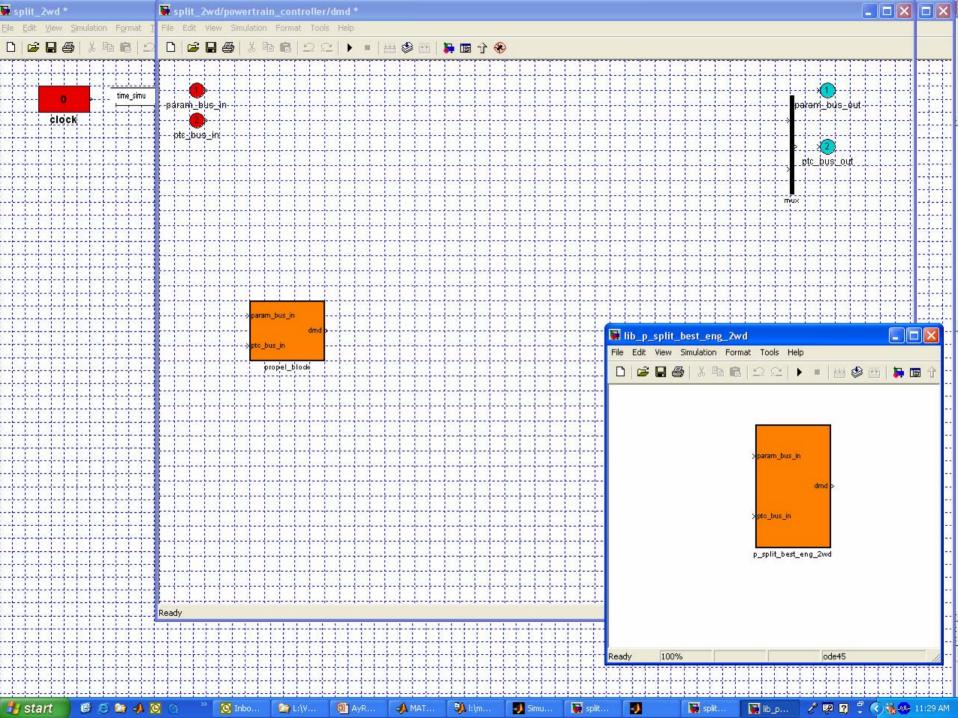
Option #2 Save Entire Vehicles

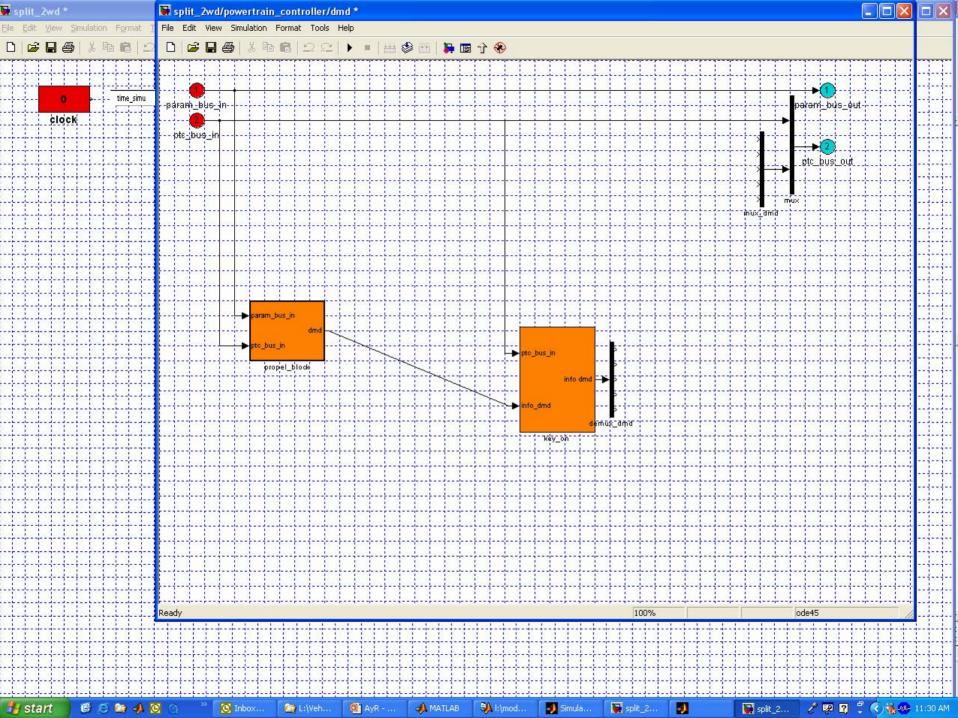


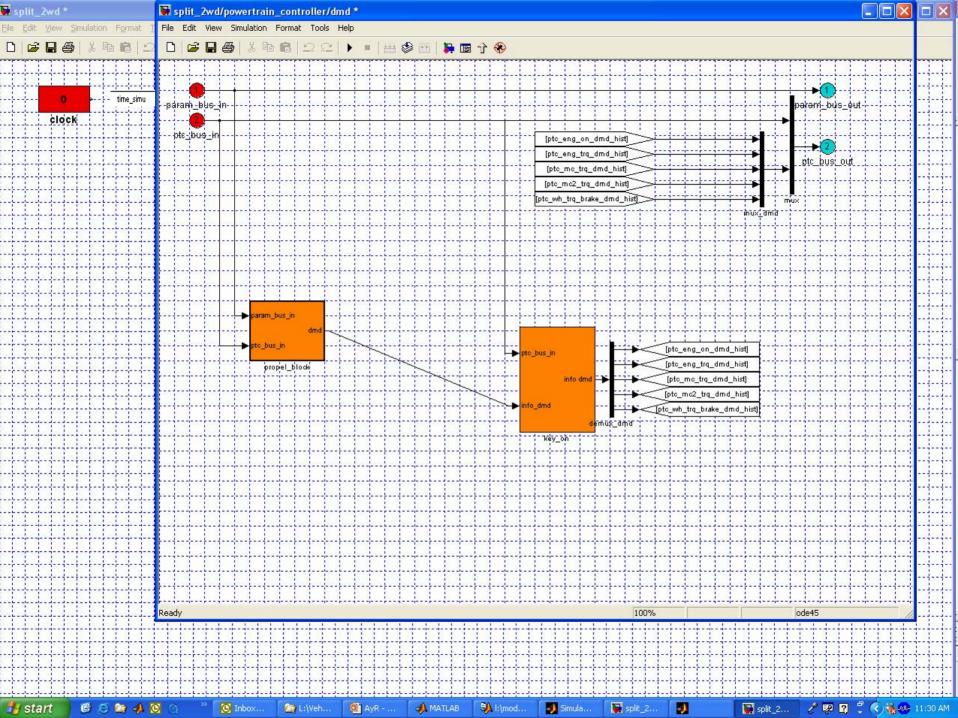

Solution Build model based on users choices using add block & add line

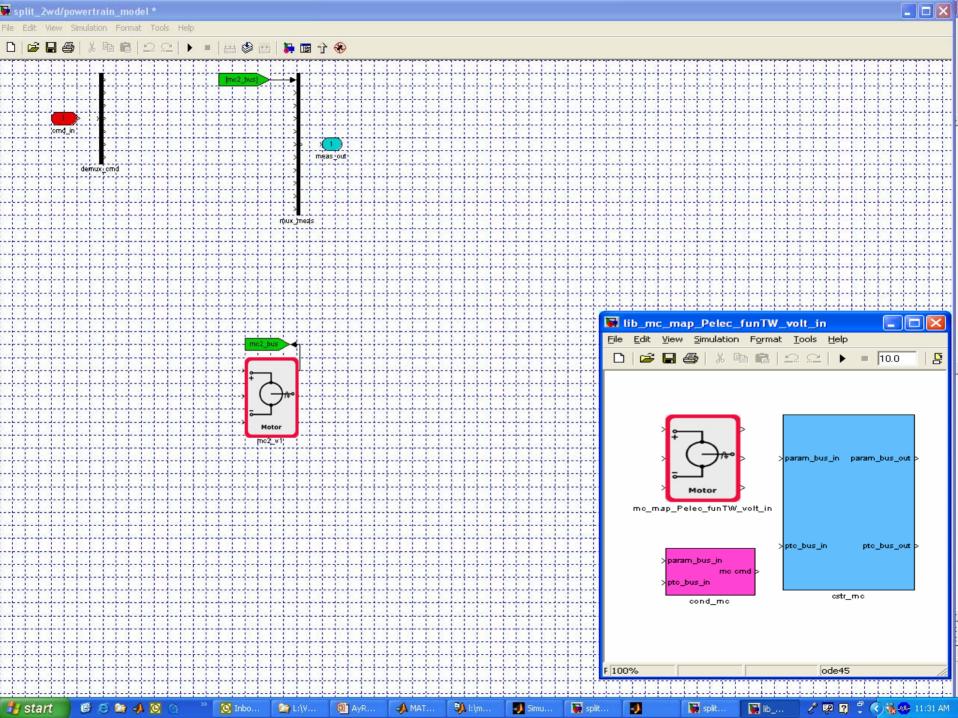



□ 🖆 🖬 叠 👗 🖻 🛍 🗅 으 으 🕨 = 🛗 参 🕮 🐌 🖬 🗘 🛞

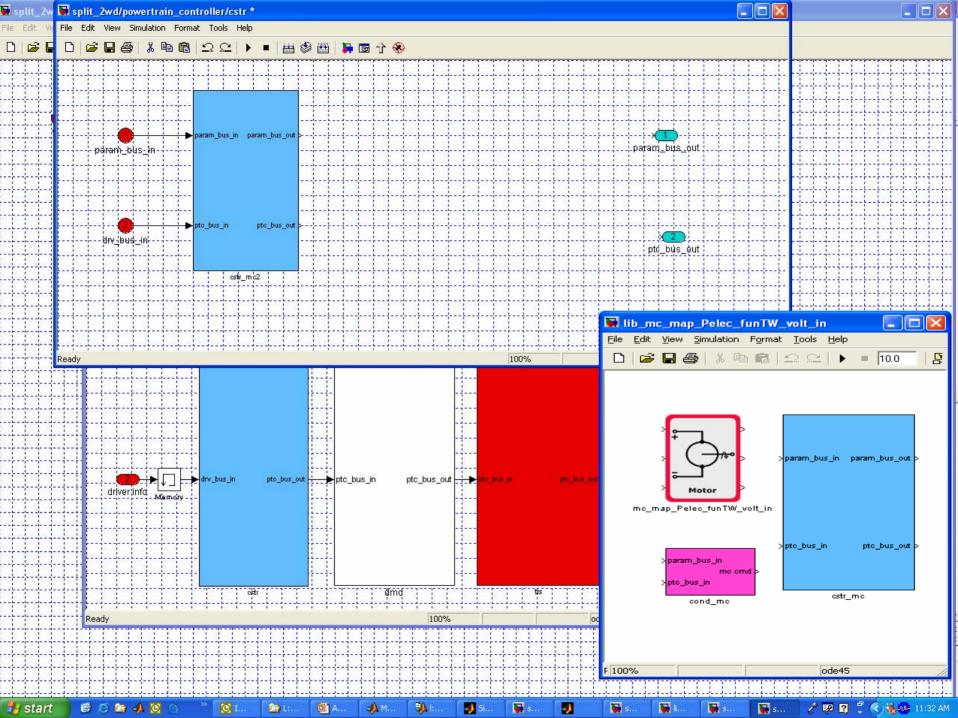

🧷 💀 😰 🖞 🔇 💑 🐢 11:27 AM 6 8 😂 📣 🖸 🔿 🐃 🔯 Inbox - Mic... 🏼 🖄 L:\Vehicle_... 🗐 Ayr - SAEO... 📣 MATLAB 🤼 l:\modeling\... 🛃 Simulation ... 🚺 split_2wd 🛃 start

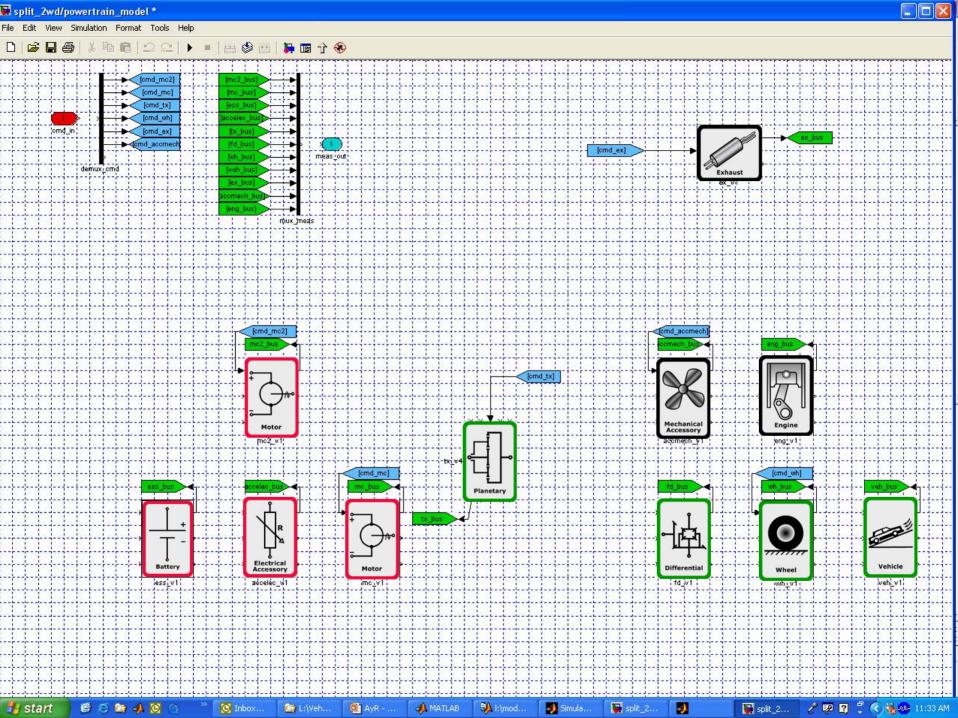


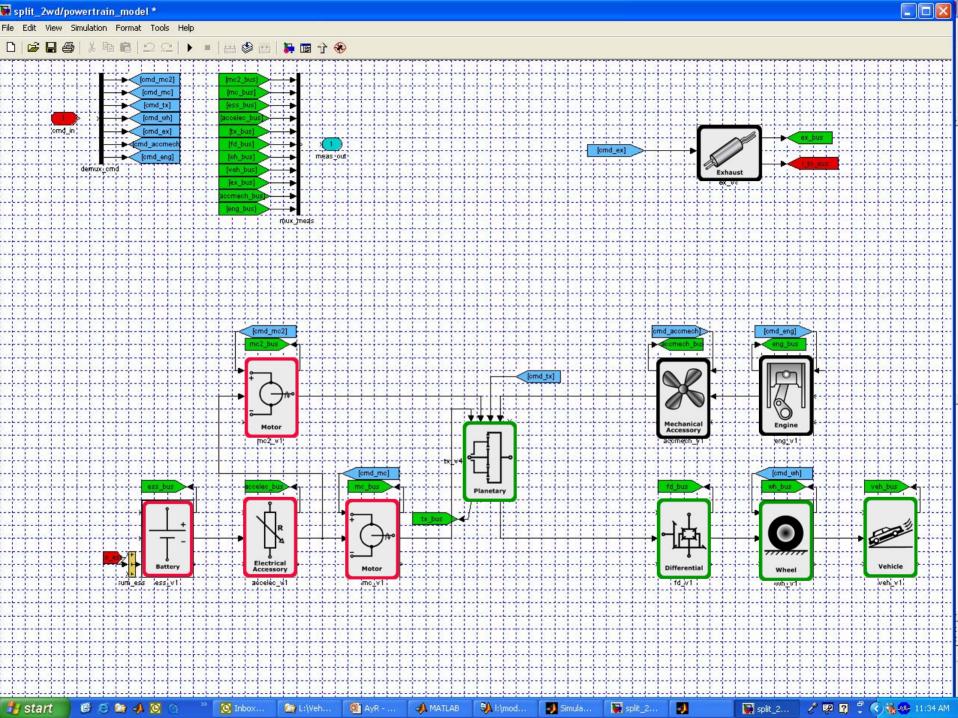


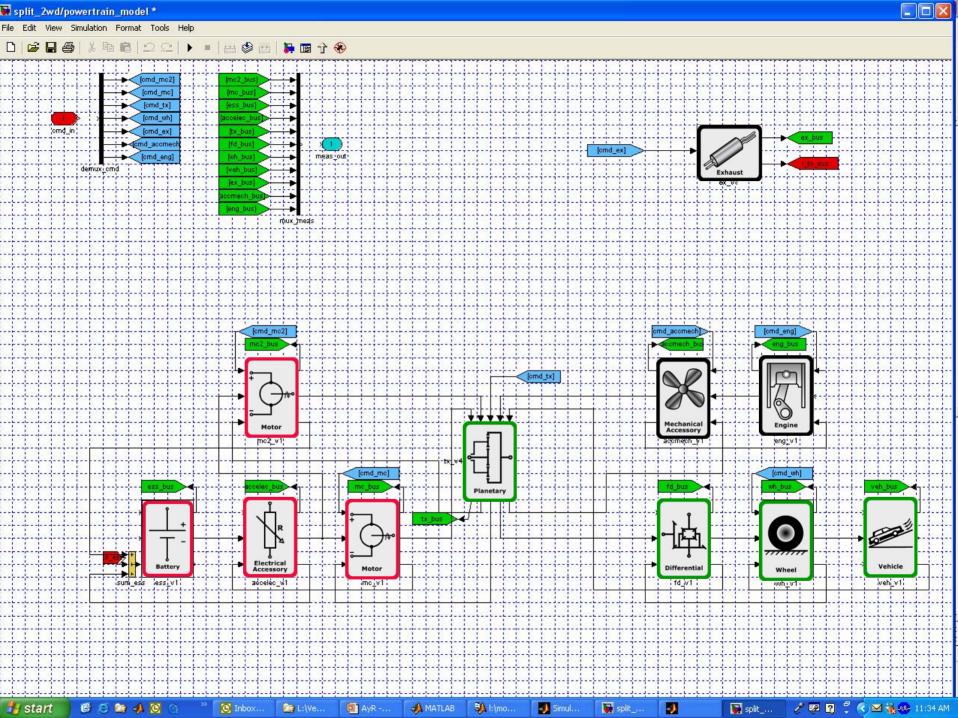


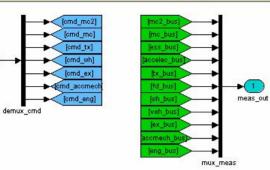


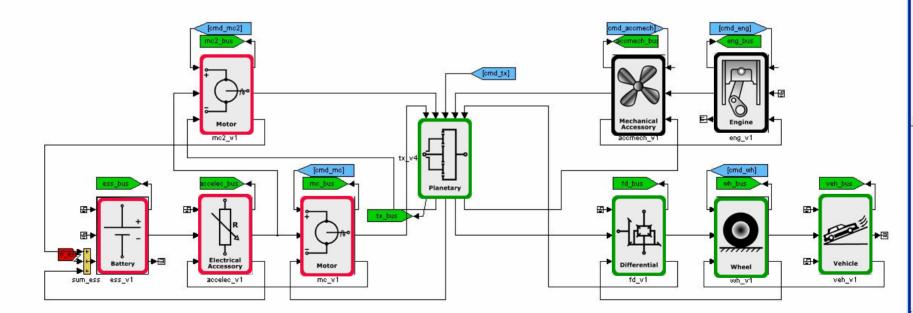










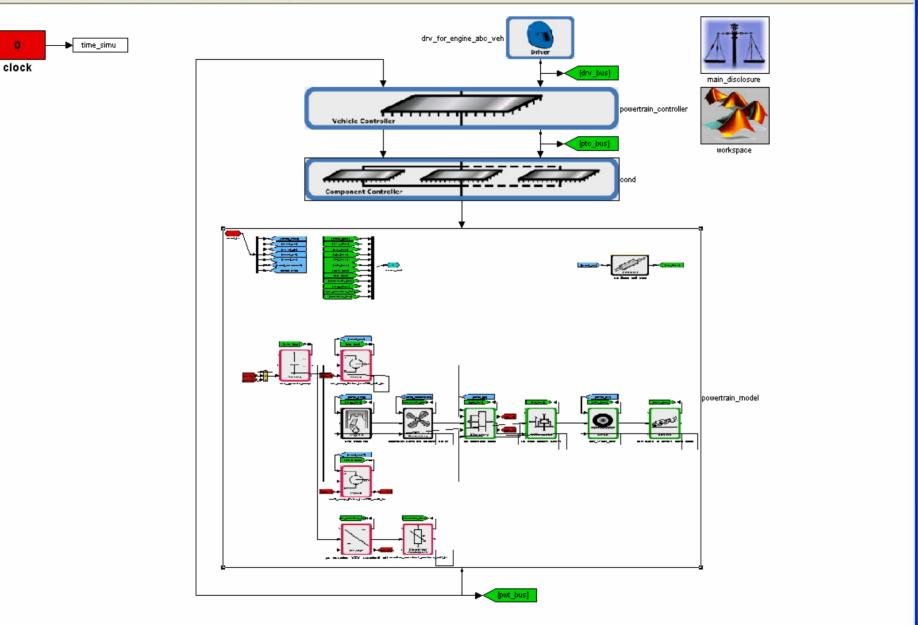


cmd_in

🛃 start 🛛 🥵

🎯 😂 😂 📣 🔯 🔿 🛛 🦹 🔯 Inbox...

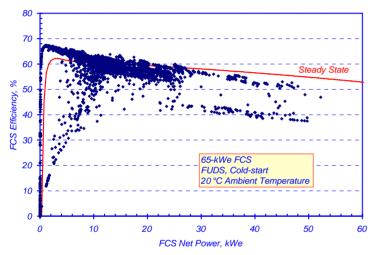
🔄 L:\Ve...


📴 AyR -... 📣 MATLAB 🖏 I:\mo... 🛃 Simul...

🙀 split_...

1

🙀 split_... 🧷 🕺 💈 🌹


🧷 🕺 🖞 🗘 🖂 🗞 🐠 11:34 AM

🥑 start 🛛 🙆 😂 🌰 📣 🧕 🕢 🧇 🧕 🔯 Inbox - Mic... 🍙 L:\Vehicle_... 🗐 AyR - SAE... 📣 MATLAB 🛛 🖏 I:\modeling... 🛃 Simulation ...

Different Models for Different Simulations

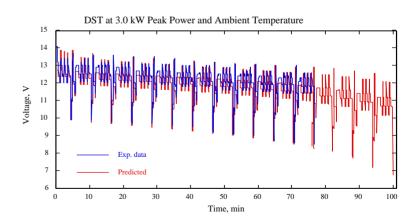
Transient, thermodynamic, physically-based, crank-angle resolved, turbocharged, intercooled <u>diesel engine.</u>

Transient, thermodynamic, physicallybased, <u>fuel cell</u> models with Argonne, based on GCtool

The <u>battery</u> model developed at the Penn State GATE Center is a thermal-electrochemical coupled model constructed on computational fluid dynamics.

Ratio [-]

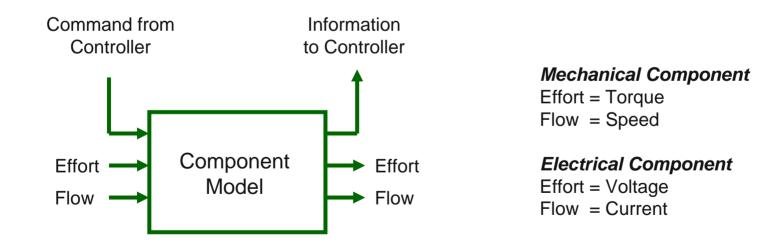
Turbine Expansion


2.5

1.5

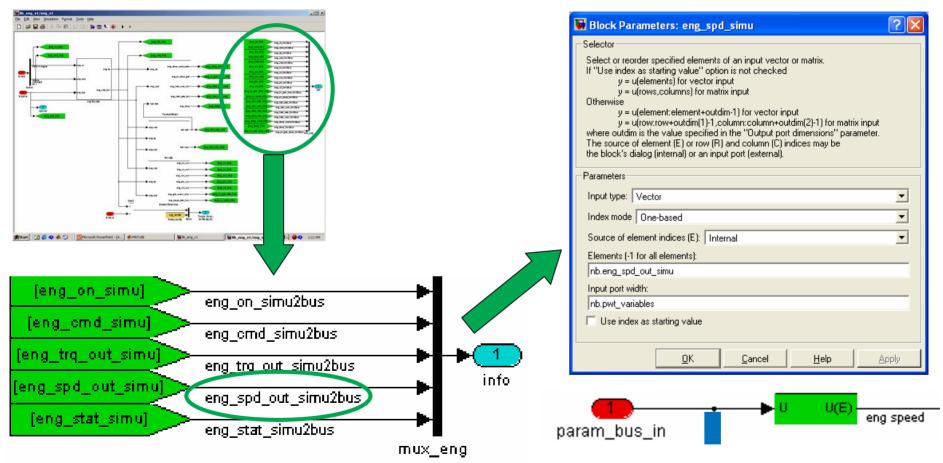
40 krpr

80 krbm


50 krpr
 60 krpr

Model Complexity Selection Facilitated by Generic Component Model Format

- Models follow Bond Graph principle
- Consistent input/output nomenclature
- Plug-and-play component models
- Configuration easy to visualize in block diagram code

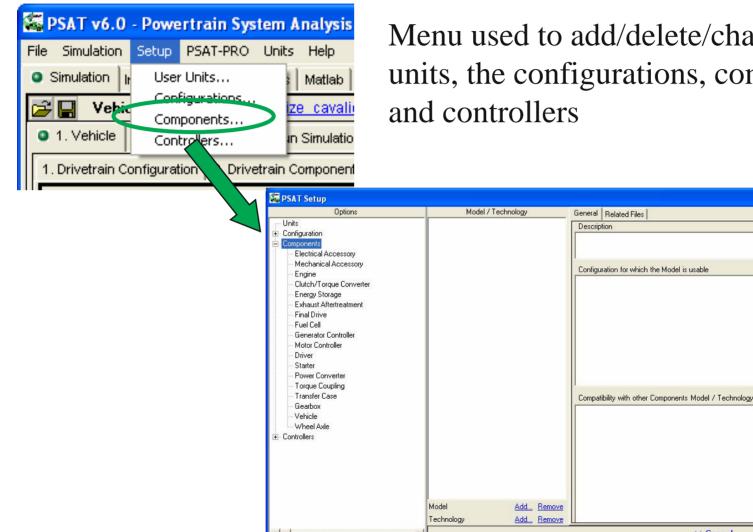

Nomenclature Allows Intuitive Parameter Understanding

- Based on three parts:
 - Type of component (e.g.: eng = engine)
 - Type of data (e.g.: trq = torque)
 - Complement of information (e.g.: max = maximum)
- All the model parameters and variables are composed using these three parts

Parameter	Type of component	Type of data #1	Type of data #2
eng_spd_out_simu	"eng" for engine	"spd" for speed	"out" for output
mc_volt_in_simu	"mc" for motor controller	"volt" for voltage	"in" for input
ptc_eng_trq_max_simu	Engine information used in the controller ("ptc")	"trq" for torque	"max" for maximum

Information Bus Automatically Created

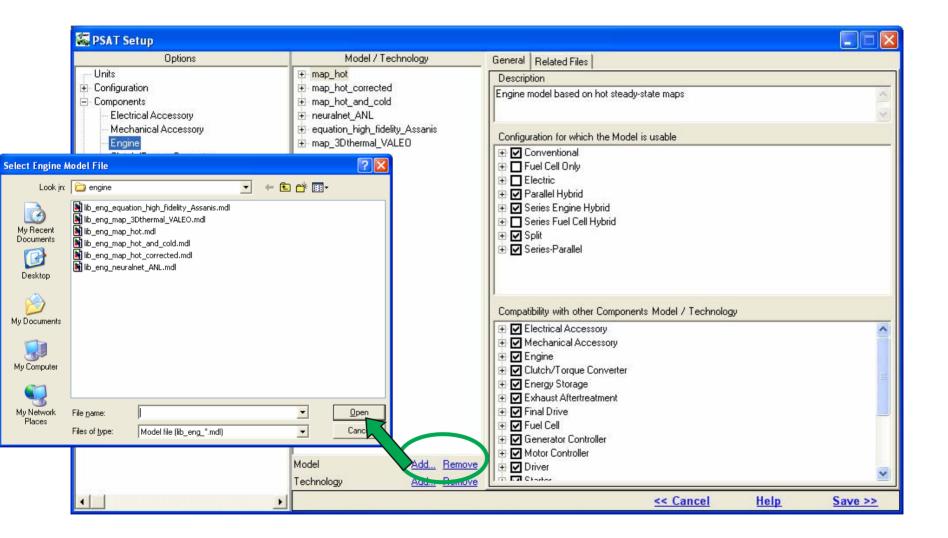
Name of the line => "name_parameter"2bus



Test Data Post-processing Facilitates Validation

	Simulation Import Data Data Analysis Matlab Conjects/Prius MY01 Project Date: 0						
	<u> </u>		Prius_MY01		4	roject Date:	6/
Powertrain: Split	Tra	ansmission: planetary	Cycle: car	UDDS	•		
😅 Data File: raw_data	a\60403037 MY01 Prius UDD)S 1Bag 5spd 1372\da	ata.txt			File Date:	6/
Variable List Variable Name			Unit	Length			
CVS Volume Flow		Nm^3/min					
CVS Pressure		hPa					
Dyno CVS Temperature		K					
Eng	CVS Corrected	Volume Flow	Nm^3/min				
Exh							
🔲 Batt	~						
Load All Data	Load Variable Li	st					
Data File	Variable Name	Unit	Conversion	PSAT Component	PSAT Variable Name	PSAT Unit	t
ravv_data\60403037 M	CVS Volume Flow	Nm^3/min	No Conversion	Exhaust Aftertreatment	test cvs_flow_test		
raw_data\60403037 M	CVS Pressure	hPa					
raw_data\60403037 M		К	Л	1	1		
-	CVS Corrected Volume Flow	Nm^3/min	Rename	e and resc	cale parame	ters	
raw_data\60403037 M		inHa	Itenuin		fuie parame		
		-					
raw_data\60403037 M	Cell RH	%	No Conversion	Vehicle 🔼	env_relative_humidity_test		
raw_data\60403037 M raw_data\60403037 M		% C	No Conversion No Conversion	Vehicle Vehicle	env_relative_humidity_test env_temp_ambient_test	с	
-	Cell Temp					C N	
raw_data\60403037 M	Cell Temp Dyno Force Front49	C	No Conversion	Vehicle	env_temp_ambient_test		
raw_data\60403037 M raw_data\60403037 M	Cell Temp Dyno Force Front49 Dyno Force Front50	C N	No Conversion No Conversion	Vehicle	env_temp_ambient_test veh_force_dyno_target_test	N	
ravv_data\60403037 M ravv_data\60403037 M ravv_data\60403037 M	Cell Temp Dyno Force Front49 Dyno Force Front50 Dyno Spd Front	C N N	No Conversion No Conversion No Conversion	Vehicle Vehic Mure	env_temp_ambient_test veh_force_dyno_target_test veh_force_in_test	N N	
raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M	Cell Temp Dyno Force Front49 Dyno Force Front50 Dyno Spd Front Dyno Spd Rear	C N N MPH	No Conversion No Conversion No Conversion km/n To m/s	Vehicle Vehic Vehic Vehicle	env_temp_ambient_test veh_force_dyno_target_test veh_force_in_test veh_lin_spd_out_test	N N m/s	
raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M	Cell Temp Dyno Force Front49 Dyno Force Front50 Dyno Spd Front Dyno Spd Rear	C N N MPH MPH	No Conversion No Conversion No Conversion km/n To m/s km/n To m/s	Vehicle Vehic Ve enicle Vehicle	env_temp_ambient_test veh_force_dyno_target_test veh_force_in_test veh_lin_spd_out_test veh_spd_dyno_rear_test	N N m/s	
raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M	Cell Temp Dyno Force Front49 Dyno Force Front50 Dyno Spd Front Dyno Spd Rear Eng Fuel Direct	C N N MPH MPH ccPerSec	No Conversion No Conversion No Conversion km/n To m/s km/n To m/s	Vehicle Vehic Vehicle Vehicle Engine	env_temp_ambient_test veh_force_dyno_target_test veh_force_in_test veh_lin_spd_out_test veh_spd_dyno_rear_test veh_spd_dyno_rear_test	N N m/s m/s	
raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M	Cell Temp Dyno Force Front49 Dyno Force Front50 Dyno Spd Front Dyno Spd Rear Eng Fuel Direct	C N N MPH MPH ccPerSec	No Conversion No Conversion No Conversion km/h To m/s km/h To m/s No conversion rpm To rad/s	Vehicle Vehic Vire Vehicle Engine Engine	env_temp_ambient_test veh_force_dyno_target_test veh_force_in_test veh_lin_spd_out_test veh_spd_dyno_rear_test eng_spd_out_test	N N m/s m/s	
raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M	Cell Temp Dyno Force Front49 Dyno Force Front50 Dyno Spd Front Dyno Spd Rear	C N N MPH MPH ccPerSec	No Conversion No Conversion No Conversion km/h To m/s km/h To m/s No conversion rpm To rad/s No Conversion	Vehicle Vehic Vie Enticle Engine Engine Engine	env_temp_ambient_test veh_force_dyno_target_test veh_force_in_test veh_lin_spd_out_test veh_spd_dyno_rear_test eng_rate_rate_test eng_spd_out_test eng_temp_air_in_test	N N m/s m/s rad/s	
raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M culate e	Cell Temp Dyno Force Front49 Dyno Force Front50 Dyno Spd Front Dyno Spd Rear Eng Fuel Direct	C N N MPH MPH ccPerSec	No Conversion No Conversion No Conversion km/n To m/s km/n To m/s No conversion No Conversion No Conversion	Vehicle Vehic Vehicle Engine Engine Engine Engine Engine	env_temp_ambient_test veh_force_dyno_target_test veh_force_in_test veh_lin_spd_out_test veh_spd_dyno_rear_test veh_spd_dyno_rear_test eng_spd_out_test eng_spd_out_test eng_temp_coolant_in_test	N m/s m/s c c c c c	Appl
raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M culate e	Cell Temp Dyno Force Front49 Dyno Force Front50 Dyno Spd Front Dyno Spd Rear Eng Fuel Direct	C N N MPH MPH ccPerSec	No Conversion No Conversion No Conversion km/n To m/s km/n To m/s No conversion No Conversion No Conversion	Vehicle Vehic Vehicle Engine Engine Engine Engine Engine	env_temp_ambient_test veh_force_dyno_target_test veh_force_in_test veh_lin_spd_out_test veh_spd_dyno_rear_test veh_spd_dyno_rear_test eng_ruei_rate_rest eng_ruei_rate_rest eng_temp_coolant_in_test eng_temp_coolant_out_test	N N m/s rad/s C C C C	Apph
raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M culate e	Cell Temp Dyno Force Front49 Dyno Force Front50 Dyno Spd Front Dyno Spd Rear Eng Fuel Direct	C N N MPH MPH ccPerSec	No Conversion No Conversion No Conversion km/n To m/s km/n To m/s No conversion No Conversion No Conversion	Vehicle Vehic Vehicle Engine Engine Engine Engine Engine	env_temp_ambient_test veh_force_dyno_target_test veh_force_in_test veh_lin_spd_out_test veh_spd_dyno_rear_test veh_spd_dyno_rear_test eng_spd_out_test eng_spd_out_test eng_temp_coolant_in_test	N m/s m/s c c c c c	Appl
raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M culate e	Cell Temp Dyno Force Front49 Dyno Force Front50 Dyno Spd Front Dyno Spd Rear Eng Fuel Direct	C N N MPH MPH ccPerSec	No Conversion No Conversion No Conversion km/n To m/s km/n To m/s No conversion No Conversion No Conversion	Vehicle Vehic Vehicle Engine Engine Engine Engine Engine	env_temp_ambient_test veh_force_dyno_target_test veh_force_in_test veh_lin_spd_out_test veh_spd_dyno_rear_test veh_spd_dyno_rear_test eng_ruei_rate_rest eng_ruei_rate_rest eng_temp_coolant_in_test eng_temp_coolant_out_test	N N m/s rad/s C C C C	Appl
raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M culate e	Cell Temp Dyno Force Front49 Dyno Force Front50 Dyno Spd Front Dyno Spd Rear Eng Fuel Direct	C N N MPH ccPerSec	No Conversion No Conversion No Conversion km/n To m/s km/n To m/s No conversion No Conversion No Conversion	Vehicle Vehic Engine Engine Engine Engine Engine	env_temp_ambient_test veh_force_dyno_target_test veh_force_in_test veh_lin_spd_out_test veh_spd_dyno_rear_test veh_spd_dyno_rear_test eng_ruei_rate_rest eng_ruei_rate_rest eng_temp_coolant_in_test eng_temp_coolant_out_test	N N m/s rad/s C C C C	Appl
raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M raw_data\60403037 M culate e ver, effic	Cell Temp Dyno Force Front49 Dyno Force Front50 Dyno Spd Front Dyno Spd Rear Eng Fuel Direct	C N N MPH ccPerSec	No Conversion No Conversion km/h To m/s km/h To m/s No Conversion No Conversion No Conversion No Conversion	Vehicle Vehic Engine Engine Engine Engine Engine Engine	env_temp_ambient_test veh_force_dyno_target_test veh_force_in_test veh_lin_spd_out_test veh_spd_dyno_rear_test eng_rate_rate_rest eng_spd_out_test eng_temp_coolant_in_test eng_temp_coolant_out_test	N N m/s rad/s C C C C	Appl

Proprietary Information Are Added Without Code Modification


Menu used to add/delete/change the units, the configurations, components

<< Cancel

Help

Save >>

Add/Remove Model

Compatibility Is Managed For the Users

🚟 PSAT Setup				
Options		Model / T	echnology	General Related Files
	the ve	- equation_losses - curve_fit_losses_d	with	General Related Files Description Vehicle model - based on aerodynamic and grade losses from equations Configuration for which the Model is usable Conventional Cell Coll Only Cell Coll Only Cell Coll Only Cell Coll Only Cell Coll Only Cell Coll Only Cell Coll Only Cell Coll Only Cell Coll Only Cell Coll Only Cell Coll Only Cell Coll Only Cell Coll Only Cell Coll Only Cell Coll Only <
⊕ Controllers	Check the box to modify it.		Add Remove	 Image: Second second

Three Year CRADA with GM

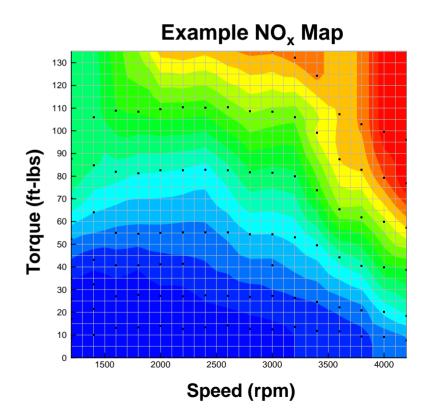
- The goal is to develop a Plug-and-Play Powertrain and Vehicle Model Architecture and Development Environment to support the rapid evaluation of new powertrain/propulsion technologies for improving fuel economy and emissions through virtual design and analysis in a math-based simulation environment.
- Permit models to be developed by anyone and everyone (Universities, National Laboratories, Manufacturers, and Suppliers (big and small)) through a common language and means of exchanging technology.
- Easy exchange of models within and between companies.

Objectives for Engine and Aftertreatment Model Development

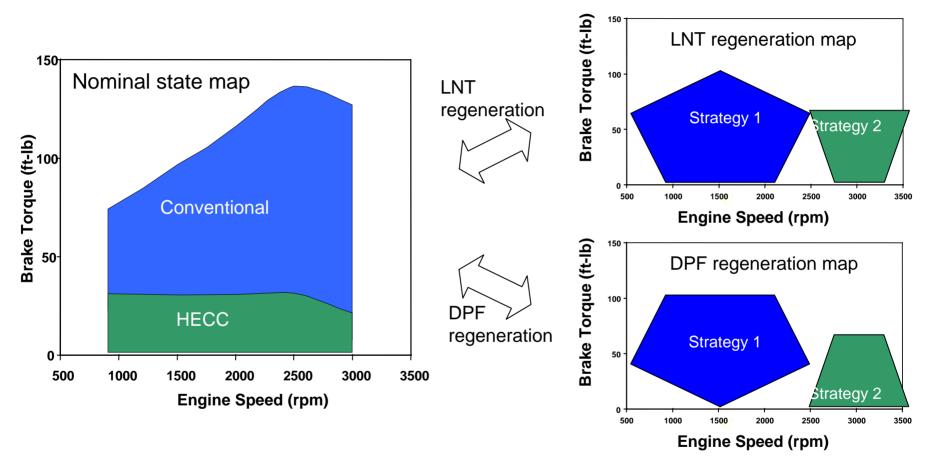
- Engine models/maps
 - performance, fuel costs, emissions
 - conventional and advanced combustion modes (HCCI, PCCI, LTC etc.)
 - regular and emerging fuels (gasoline, diesel, hydrogen etc.)
- After treatment models
 - performance, costs (fuel penalty, aging etc.)
 - systems integration and control
 - failure modes

Approach for Engine and Aftertreatment Model Development

- Engine maps
 - conventional and high efficiency clean combustion (HECC/PCCI)
 - regular mode (lean or stoic) & special modes for facilitating regeneration of after treatment devices (e.g., rich operation for LNT regeneration, high temperature lean operation for DPF regeneration)
 - source : experiments or simulations (numerical experiments)
- Define strategies/schemes for linking devices with engine maps during nominal & NOx/SOx/PM regeneration
- <u>Deliverables</u>: PSAT sub-models for advanced combustion engines & emissions controls, enabling assessment of vehicle fuel economy & emissions impact


Recent Engine & Aftertreatment Modeling Accomplishments

- Defined approach for expanding Mercedes engine map to include LNT regeneration states
- Simulink Chalmers LNT model operating and fitted with CLEERS protocol data for a Umicore catalyst
- Initial Simulink LNT and engine supervisor modules constructed and now undergoing tests in PSAT
- O-D DPF MatLab model written and undergoing testing prior to Simulink implementation


Standard Engine Mapping Approach for PSAT Relies on Experimental Data Tabulation

- Detailed speed-load sweep provides data to map engine (e.g., 109 operating conditions for MB 1.7-L)
- Data includes fuel consumption, intake temperature, intake pressure, exhaust temperature, exhaust mass flow rate, and regulated pollutants
- Square matrix generated by nearest-neighbor interpolation based on measured data

Our plan is to Create Parallel Engine Maps for LNT and DPF Regeneration States

- Regeneration maps derived from limited data, WAVE simulations
- Engine switching triggered by LNT/DPF state indicators, engine supervisor assessment

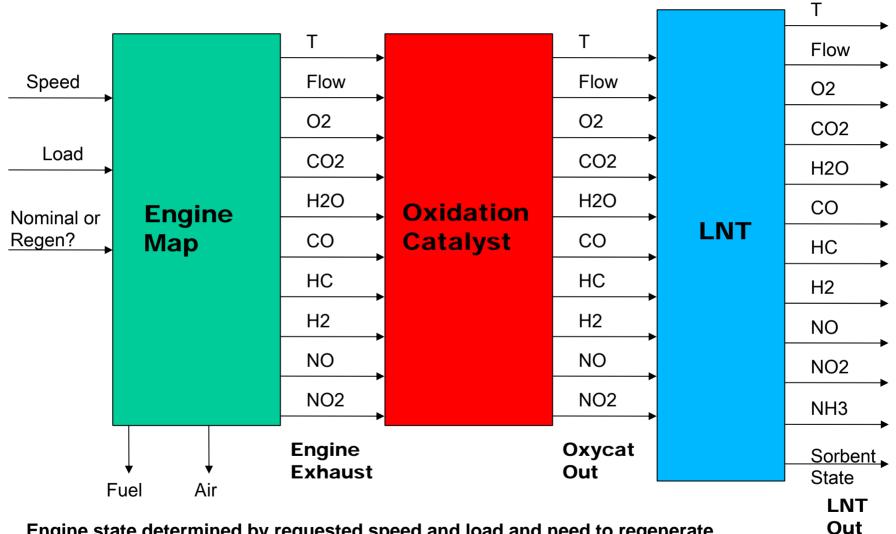
LNT Simulink Model (Ind. Eng. Chem. Res. 2005, 44, 3021)

- Based on a Chalmers/GM model (Ind. Eng. Chem. Res. 2005, 44, 3021)
- Accounts for:
 - NOx capture in nitrite/nitrate form and C_3H_6 based regeneration
 - NO<=>NO₂ inter-conversion
 - Diffusion resistance to bulk nitrite/nitrate storage (shrinking core)
- Extensions
 - CO/H₂ based regeneration (as in CLEERS protocol)
 - CO equivalent to H2 in terms of reducing capacity
 - Oxygen storage
 - calibrated using CLEERS protocol data for a Umicore catalyst
 - S poisoning (not available yet)
 - De-sulfation (not yet available)

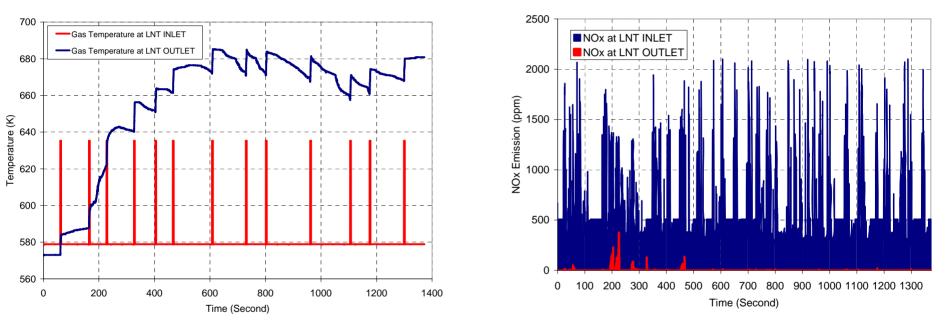


Regeneration schemes

- No regeneration when LNT-out T < 150°C
- Minimum period of lean operation between regenerations
- Downstream NOx sensor based engine control
 - regenerate if LNT-out NOx conc exceeds a user-specified level
 - fixed regeneration interval (user-specified)
 - impractical (NOx sensors are expensive, hard to measure NOx at low concentrations)
- Downstream UEGO sensor based engine control
 - regenerate at fixed intervals
 - stop regen when A/F drops below a specified value (e.g., 14.1)
- Engine map based control : no feedback
 - Integrating NOx influx into the LNT
 - start a regeneration when the integrated NOx exceeds a given fraction (say 25%) of the storage capacity


LNT-out NOx feedback based regen : optimal performance

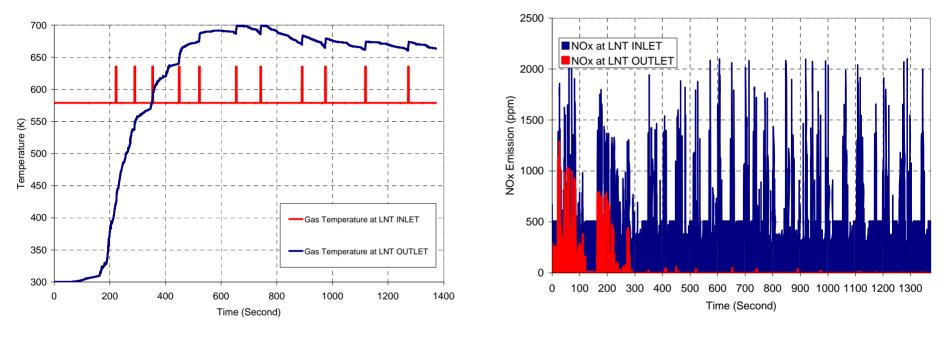
- LNT supervisor monitors LNT state and requests regeneration when needed
- Engine supervisor commands regeneration when speed/load/other constraints permit
- Regeneration command switches engine to LNT regeneration map for specified period
- Engine supervisor must also prioritize LNT regeneration relative to DPF regeneration and other emission control requests


Integration of various sub-models with in **PSAT**

Engine state determined by requested speed and load and need to regenerate

Predicted LNT performance during a (UDDS) cycle on a Mercedes 1.7-liter engine with an initially warm catalyst*

Regen strategy : NOx sensor feedback based engine control


Overall NOx reduction efficiency: 98.6% Fuel penalty due in operating and regenerating the LNT : 3.0% (estimate based on a single regeneration conditions, full regeneration map not available)

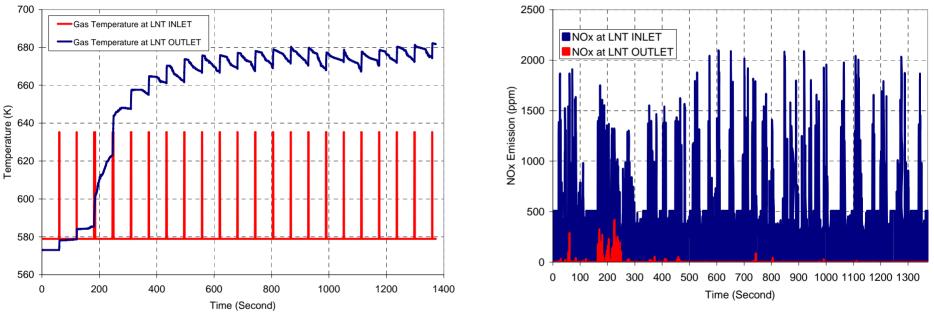
*Initial catalyst T : 300°C, Initial LNT-in gas temperature : 310°C

Predicted LNT performance during a (UDDS) cycle on a Mercedes 1.7-liter engine with an initially cold catalyst*

Regen strategy : NOx sensor feedback based engine control

Overall NOx reduction efficiency : 88.50%

Fuel penalty due in operating and regenerating the LNT : 2.04% (estimate based on a single regeneration conditions, full regeneration map not yet available)

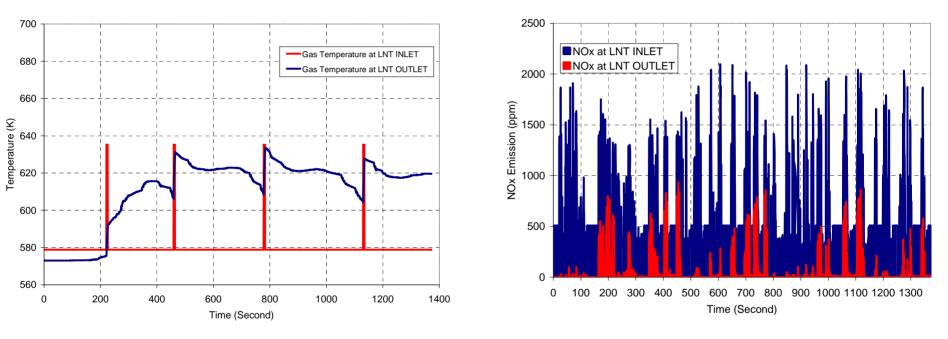

*Initial catalyst T : 27°C, Initial LNT-in gas temperature : 310°C

Predicted LNT performance during a (UDDS) cycle on a Mercedes 1.7-liter engine with an initially an

initially warm catalyst*

Regen strategy : UEGO sensor feedback based engine control

Overall NOx reduction efficiency : 97.7%


Fuel penalty due in operating and regenerating the LNT : 6.18% (estimate based on a single regeneration conditions, full regeneration map yet not available)

*Initial catalyst T : 300°C, Initial LNT-in gas temperature : 310°C

Predicted LNT performance during a (UDDS) cycle on a Mercedes 1.7-liter engine with an initially warm catalyst*

Regen strategy : Engine map based control

Overall NOx reduction efficiency: 81.0% Fuel penalty due in operating and regenerating the LNT : 1.34% (estimate based on a single regeneration conditions, full regeneration map not available)

*Initial catalyst T : 300°C, Initial LNT-in gas temperature : 310°C

Planned DPF regeneration logic

- DPF supervisor monitors DPF state (pressure drop) and requests regeneration when needed
- Engine supervisor commands regeneration when speed/load constraints permit
- Regeneration command switches engine to DPF regeneration map for specified period
- Engine supervisor must also prioritize DPF regeneration relative to LNT regeneration and other emission control requests

Future Plans (1)

- Update and supplement LNT and DPF sub-models
 - Other regeneration schemes (suggestion welcome)
 - Aging/S effects
 - test various after treatment configurations (i.e., integration of various sub-models in series)
- Expand engine maps
 - LNT/DPF regeneration states=> full FTP capability
 - 1.9-L GM with conventional and advanced combustion modes
 - Honda Accord with cylinder deactivation
 - Alternative and conventional fuels (e.g., ethanol, biodiesel)
- Evaluate new engine and aftertreatment technologies with respect to FreedomCAR efficiency and emissions targets
 - Phase 1: Use Multi-mode LTC MB engine map (current platform)
 - Phase 2: Use GM engine map (future platform)

Future Plans (2)

- Add SCR device sub-model
- Other baseline regeneration strategies for both LNT and DPF for inclusion in PSAT (input from CLEERS community very important)

Contact information

- PSAT
 - Aymeric Rousseau (arousseau@anl.gov)
- Engine and aftertreatment submodels
 - Johney Green (greenjbjr@ornl.gov)
- Model details
 - Kalyana Chakravarthy (chakravartvk@ornl.gov)
 - Zhiming Gao (gaoz@ornl.gov)

