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System Models: Current Literature

He, GM R&D  (SAE 2007-01-1138)

– Integrated in Simulink
Pischlinger, et al., FEV (SAE 2007-01-1128)

– In-house integration environment
Guthenke, et al., DaimlerChrysler (SAE 2007-01-1117)

– GUI based in-house integration environment
Piscaglia, et al., Polt. Di Milano (SAE 2007-01-1133)

– Simulink
– DPF model to test ECU model

Aftertreatment 
Devices

Engine and 
Emissions

Exhaust flow
Numerical parameters

• Detailed physics based
AT models

• Primary use: evaluate AT 
configurations

• No engine or emissions
models
- Driven by laboratory data
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Simulink

ERC Work: Integrated System Level Model

Aftertreatment 
Devices

Engine and 
Emissions

Exhaust flow
Numerical parameters
Control connection

Combustion 
Models

Emission 
Models

Engine Flow 
Models

LNT, etc. 
Models

DOC
Model

DPF
Model
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System Modeling Approach

Develop an integrated system level computer model
– Capture interactions:

• Device – Device
• Device - Engine

– Transient
– Conventional and LTC (HCCI, PCCI, etc.) diesel combustion

Develop new component models as needed
– Examples: LTC heat release, emissions, heat transfer

Incorporate existing models/modules
– Examples: DPF, DOC, LNT, …

Integrate components as modules in an overall system level environment
– Environment: Matlab-Simulink

• Also allows controllers
– Develop modular approach for efficiency and ease-of-use

Validation
– Component level: experimental data
– System level: experimental data (when available) and “sense checks”
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Objectives and Results

Explore steady state and transient scenarios
– Examine and help explain device interactions
– Suggest ‘guidelines’ of operation

• Based on model results and analysis

Recent results
– LTC combustion under load transients
– Effect of DPF loading and regeneration on engine 

operation
– Compare different DPF regeneration techniques
– Model prevention and control of runaway DPF 

regenerations
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Diesel Engine Model

WAVE or GT-Power
Industry standard
Includes:
– Heat transfer models
– Flow models
– Turbocharger model (VGT)
– Simple Combustion model

• Heat release rates from 
experimental pressure

• Could also use built in 
heat release models

• Calibration required
Communicate with Simulink using 
sensors and actuators

Example of a WAVE engine model 
with sensors and actuators

Exhaust Fuel Injector 
(Ahead of DOC)

exhaust

Intake 
Throttle
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Traditional Diesel Engine Model - Disadvantages

Simple combustion (heat release) model
– Prescribed function, calibrated with engine data
– Simple spray models

Simple emissions models

Sufficient for conventional diesel operation but not for 
new LTC type combustion technologies

Need improved combustion / heat-release models 
and emissions models for current application
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User Defined Cylinder Models

Fuel Injection

Energy, Species
Conservation

CombustionVaporization

IVC EVO

Heat Transfer

Emissions 
In-Cylinder 

Models

GT-Power Engine Model
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Multi-Zone Combustion Model

Combustion chamber initialized with multiple zones
The zones include sub-models for vaporization, chemical 
kinetics (CHEMKIN), heat transfer, energy/species conservation

Schematic representation 
of zones

IVC

EVO

2 31 54
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CFD In-Cylinder Model

Accurate modeling of fuel 
injection, spray dynamics, 
mixing, vaporization, 
chemistry and emissions  
calculations
Fine – coarse mapped grid

Detailed in-cylinder 
CFD model

(KIVA-Chemkin)

IVC

EVO
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CFD In-Cylinder Model

Accurate modeling of fuel 
injection, spray dynamics, 
mixing, vaporization, 
chemistry and emissions  
calculations
Fine – coarse mapped grid

IVC

EVO
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Run Times for Different Approaches 

The modeling approaches can be used in multiple 
cycle, transient simulations

Single Zone user combustion 
model

4 minutes

5 zone external cylinder model 17 minutes

GT-Power with mapped grid 
approach in 2-D

~70 minutes

GT-Power with refined grid in 2-D 
(1052 cells at BDC) 

~ 9 hours

GT-Power with mapped grid using 
3-D sector grids 

~90 minutes

GT-Power with refined 3-D sector 
grids (5460 cells at BDC) 

~ 1 day
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CA50 Controlled by Actuating IVC

Step transient induced in CA50
Controller forces a delay in intake valve closure

IVC
actuated

CA50 Controlled

Target CA50

Sensed CA50

Actuated IVC

C
A

50
  (

C
A

D
) IVC

 (C
A

D
)

Time (s)
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Dual Control – Control CA50 During Load Increase

Step 
change in 
load

IVC 
actuated to 
maintain 
combustion 
phasing

Target CA50

Sensed CA50

Actuated IVC

CA50 set to –6.6 deg 
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Diesel-PCCI Mode Change: Cooled EGR and IVC

Model transition:   
conventional – PCCI –
conventional
Conventional SOI:

–12 deg ATDC
PCCI mode SOI:

IVC + 5CAD

IVC response for PCCI 
under different EGR 
conditions
– IVC actuation during 

the mode transition 
decreases with 
increase in EGR 
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C
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IMEP set to 5.3 bar
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Emissions Models

Need accurate, fast emissions models to drive the 
aftertreatment device models

Focus:   Simpler, faster engine combustion models (for now)
Long run times for DPF filling

General approach:
– Use good physically based phenomenological model as 

starting point
– Improve model using neural networks to replace model 

coefficients

Models required
– Soot
– NOx
– CO2
– HC

completed

under development
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Soot Emissions Model

Physically based neural network model
Physical model: Bayer and Foster,
SAE 2003-01-1070
Phenomenological models for
– Injection spray

• Predicts spray angle, liquid 
penetration, liftoff length, 
local equivalence ratio, 
temperatures, etc.

– Particulate formation and oxidation

Inputs are obtained from the engine model
– Profiles of in-cylinder pressure, in-cylinder mean temperature, 

mass flow rate of fuel through injector, heat release rate
– Engine speed, percent EGR, global equivalence ratio

0.5 1.8
sosf EE

RTs RT
sf f so s

dm C m P e C m P e
dt

φ
−−

= −

Small soot particles formed
from rich initial combustion

Large soot particles in vortex 
head, mixing until eventually 
oxidized by diffusion flame.

Entrained Hot Air
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Neural Net Soot Emissions Model

Brahma et. at., SAE 2005-01-1122
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Neural network weights added to 
the physical model

Neural network weights trained 
using experimental engine data for 
8 modes of operation 
– Approximately 57% reduction in 

error of predicted soot

Converted into an M-file
– M-file version runs in 1/3 the 

time of the original Simulink
version

– Small time steps are no longer 
propagated to other component 
models
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Soot Model and Time Steps

Each component / module in integrated system requires a 
certain time step, Δt

Overall system runs at ~2.5ms  Δt (primarily set by engine 
model)

Soot requires 0.5 CA data ( ~ 0.05 ms  Δt)
– Model requires crank-angle resolved spray and heat release 

profiles

Simulink manages time stepping
– Probes models to determine required times
– Adjusts overall simulation to smallest  Δt in system

Soot model  Δt requirement can severely limit overall system 
speed
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Solutions for Managing Disparate Time Scales

Hide inner workings of model from Simulink
– Use self-contained Matlab or Fortran/C routines
– Use sub-cycling time integration inside routines
– Use level 2 S-functions

• These can specify their own hit time

Use external file for
data transfer
– Pass small Δt data

outside of Simulink

Implement periodic ‘triggering’
– Skip calculation in model except every ‘n’ engine cycles
– Use most recent solution until next calculation

Combustion 
Models

Emission 
Models

Engine 
Models

LNT, etc. 
Models

DOC
Model

DPF
Model
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NOx Emissions Model

Physically based neural 
network model (Brahma and 
appendix of England et. al., 
SAE 2006-01-0263)
Implemented as an M-file
Inputs are obtained from the 
engine and soot models
NOx prediction is based on 
maximum rate of formation

Trained using experimental 
engine data for 8 modes of 
operation 1 2 3 4 5 6 7 8
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DOC Model

Proprietary GM model  (Bissett)
– Includes kinetics for oxidation of CO, HC, and NO 

to NO2

Implemented as a Fortran version
– Faster than Simulink version

Fortran allows decoupling of integration time
– DOC model can operate at large time steps (10 

ms or longer)
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Combined DPF-LNT

DPF

LNT

+

SNT

=

PlugExhaust gases in

Exhaust gases out
(higher CO, CO2 

levels)Soot ‘cake’ deposit

Lean
storage

NOx storage

Exhaust gases in

Exhaust gases out

Soot depositFlow chronology

NOx

N
O

x
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Controllers and Validation

Controllers implemented
in Simulink for:
– Engine load (fueling)
– Engine speed
– EGR
– Turbo boost
– DPF regeneration

The component models tested and validated individually

The integrated model is tested to verify proper component 
interaction
– DPF loading and regeneration simulations to test the model 

and component interaction
– The simulation results are consistent with experimental 

results presented by Singh et. al. (SAE 2006-01-0879)

Combustion 
Models

Emission 
Models

Engine 
Models

LNT, etc. 
Models

DOC
Model

DPF
Model
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DPF Loading and Regeneration
Simulate a light duty, turbo charged, CIDI engine
– Common rail direct fuel injection
– Variable geometry turbine

Regeneration: modes 3 and 5
– DPF initially loaded to 3 [g/l] of soot and regeneration starts at 3.2 [g/l]
– Mode 5: Fuel injected ahead of the DOC
– Mode 3: Fuel injected ahead of the DOC with intake throttling assistance

Regeneration tests were done with mode switching (mode 5 to 2) during 
regeneration to investigate prevention/control of regeneration runaway

Mode
Number Load

Engine
Speed
[RPM]

Approximate
Fueling Rate

[kg/hr]

EGR 
[mass %]

2 Very Low 970 1.42 62.14
3 Low 1120 4.035 37.96
5 Moderate-Low 1520 9.365 19.15
8 Moderate 2320 18.85 10.50
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DPF Regeneration (Mode 5)

Fuel injected in exhaust before DOC
Increases reactions in DOC and exhaust T
Controlled to achieve a desired DPF inlet temperature of 
600 °C
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DPF Regeneration (Mode 5)

Simulation results are consistent with the experimental results 
given by Singh et. al. (SAE 2006-01-0879)
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Throttle Assisted Regeneration (Mode 3)

Engine exhaust temperatures too low for fuel injection before DOC 
(> 300 C required) 
Throttle engine intake air flow
– Increases equivalence ratio and engine exhaust T (ΔT = 44 °C)

Higher exhaust T allows fuel injection in exhaust before DOC
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Throttle Assisted Regeneration (Mode 3)

0 10 20 30 40
0

1

2

3

4

5

6

7

0 10 20 30 40

5

10

15

20

Pr
es

su
re

 D
ro

p 
 [k

Pa
]

Time [min]

Tr
ap

pe
d 

So
ot

  [
g]

Time [min]

DPF Regeneration

DPF Regeneration

Mass of Soot Trapped 
in the DPF

Pressure Drop 
Across DPF

Note long 
regeneration 

time



33

Throttle Assisted Regeneration (Mode 3)

Engine out NOx increased significantly during DPF regeneration
Intake throttling required reducing EGR to maintain sufficient O2 
for given load
Reduced EGR resulted in higher engine out NOx
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Good Device Gone Bad
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Runaway Regeneration (Mode 5)

Regeneration by fuel injection before DOC
Try to reduce regeneration time by injecting more fuel
Results in runaway regeneration
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Runaway Regeneration (Mode 5)
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Preventing Runaway Regenerations

Use ΔT predictive capability in the regeneration controller via simple 
energy balance:

Very simple energy balance will get the DPF inlet temperature within 10 
[°C] of the target value

Use PI feedback control to adjust the predicted exhaust fuel injection rate 
to obtain the target DPF inlet temperature

Feedback PI controller alone (without predictive capability) is not 
recommended

exh exh exh
fuel

fuel

m Cp Tm
LHV

Δ
=
&

&
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Regeneration During Mode 5-2 Transient
Runaway regeneration occurs when DPF is very hot and:

– Exhaust flow rate is suddenly lowered in mode transitions
– Excess O2 is available in exhaust
– Consistent with results from Koltsakis, et al. (SAE 2007-01-1127)

Prevent runaway regeneration by intake throttling to reduce available O2 in exhaust
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Regeneration: Runaway after 
Mode Switch

Prevent Runaway with Air 
Injection into DPF
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Controlling Runaway Regenerations

The integrated model has been used to simulate how 
a runaway regeneration can be detected and 
controlled
– Reactive control

Can the integrated model be used to detect 
unfavorable conditions before a runaway 
regeneration starts to prevent runaway proactively?
– To investigate this possibility phase diagrams 

have been generated
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DPF Phase Diagrams

Phase Diagrams:
– Max DPF wall T
– Function of:

• Equivalence ratio 
(e.g. available O2)

• Exhaust flow rate

Example:
– Mode 8 to mode 2 

transient during 
regeneration

Conditions:
– Initial DPF wall 

temperature = 600 °C
– Soot loading = 4 g/l
– Inlet temperature = 

162 °C (after switch to 
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Using the Phase Diagrams

Runaway regeneration occurs 
when DPF is very hot and:
– Exhaust flow rate is low
– Excess O2 is available

By using the phase diagram 
unsafe operating conditions 
can be identified and avoided 
by:
– Intake throttling
– Air injection into DPF inlet
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Summary

Integrated system model for diesel aftertreatment studies

Advanced engine combustion model for LTC studies

Accurate emissions models to drive the aftertreatment 
devices

Accurate, modular aftertreatment devices models

Implemented in Simulink for controls and numerical 
management

Integrated model used to explore DPF regeneration

– Phase maps to explore runaway regeneration 
recovery
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Ongoing Activities

Development of additional submodels
– CO and HC emissions models
– Incorporation of an SCR device model

Continue improvements to integrated system
– Improve computer run times
– Improve modularity and ease-of-use

Continue to use the system model to study device 
interactions and appropriate operation for transient 
and regeneration scenarios
– Develop ‘guidelines for operation’
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Thank You
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