IR-spectroscopy based multi-site kinetic modeling for NH₃-SCR on Fe-BEA

Stavros SKARLIS CLEERS Workshop 2013

Energies nouvelles

<u>Technical advisors team</u> André NICOLLE (Supervisor, IFPEN) David BERTHOUT (Supervisor, IFPEN) Christophe DUJARDIN (Academic Supervisor, Univ. Lille 1) Pascal GRANGER (Thesis Director, Univ. Lille 1)

- IFP Energies

2013

 \odot

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2013, 10-12.04.2013

UCCS – Université Lille 1

- Fe-zeolite based Urea-SCR catalysts
- A multi-site kinetic modeling approach
- IR spectroscopy based multi-site kinetic modeling
 - Fe-BEA synthesis and characterization
 - NH₃ adsorption: IR spectroscopic measurements
 - Modeling and simulation

- Fe-zeolite based Urea-SCR catalysts
- A multi-site kinetic modeling approach
- IR spectroscopy based multi-site kinetic modeling
 - Fe-BEA synthesis and characterization
 - NH₃ adsorption: IR spectroscopic measurements
 - Modeling and simulation

© 2013 - IFP Energies nouvelles

Fe-zeolite based Urea-SCR catalysts (1/2)

Fe-zeolites as SCR catalysts

- High deNO_x efficiency over a broad range of temperatures: 200 – 550 °C

- Resistance to hydrothermal ageing

Alumina (Al_2O_3) – Silicate (SiO_2) natural or synthetic materials

Fe-zeolite based Urea-SCR catalysts (2/2)

NH₃-SCR chemistry over Fe-zeolites

- Fe-zeolite based Urea-SCR catalysts
- A multi-site kinetic modeling approach
- IR spectroscopy based multi-site kinetic modeling
 - Fe-BEA synthesis and characterization
 - NH₃ adsorption: IR spectroscopic measurements
 - Modeling and simulation

Conclusions and perspectives

- IFP Energies nouvelles

2013

A multi-site kinetic modeling approach (1/2)

Multi-site kinetic modeling of NH₃ adsorption and desorption on Fe-ZSM5

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2013, 10-12.04.2013

A multi-site kinetic modeling approach (2/2)

Multi-site kinetic modeling approach evaluation

Phenomenological approach	Experimental results required for model development
Precision	Kinetics calibration complexity

- Fe-zeolite based Urea-SCR catalysts
- A multi-site kinetic modeling approach
- IR spectroscopy based multi-site kinetic modeling
 - Fe-BEA synthesis and characterization
 - NH₃ adsorption: IR spectroscopic measurements
 - Modeling and simulation

Conclusions and perspectives

Fe-BEA synthesis and characterization (1/2)

Fe-BEA synthesis

Parent zeolite: H-BEA (Si/Al=11.8) [IFP EN]
Synthesis method: Wet ion exchange
Fe precursor: Fe(NO₃)₃ aqueous solution
Protocol: G. Delahay et al.
(A. Cat. B: Environ., 55, 149-155)

ICP-AES results

Element	Composition (wt.%)	Molar amount (mol/kg _{cat.})
Fe	1.75	0.31
AI	2.98	1.11
Si	36.93	13.15

Fe-BEA synthesis and characterization (2/2)

2013 - IFP Energies nouvelles

- Fe-zeolite based Urea-SCR catalysts
- A multi-site kinetic modeling approach
- IR spectroscopy based multi-site kinetic modeling
 - Fe-BEA synthesis and characterization
 - **NH**₃ adsorption: IR spectroscopic measurements
 - Modeling and simulation

and we to the the measure even and ended for the transfer and the second of the second s

NH₃ adsorption: IR spectroscopic measurements (1/4)

Experimental set-up

Gas phase analysis

Solid phase analysis

10 mg H- & Fe-BEA Crushed in pellet $P = P_{atm.}$

NH₃ adsorption: IR spectroscopic measurements (2/4)

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2013, 10-12.04.2013

NH₃ adsorption: IR spectroscopic measurements (3/4) Measurements on Fe-BEA

15

NH₃ adsorption: IR spectroscopic measurements (4/4)

© 2013 - IFP Energies nouvelles

- IR spectroscopy based multi-site kinetic modeling
 - Fe-BEA synthesis and characterization
 - NH₃ adsorption: IR spectroscopic measurements
 - **Modeling and simulation**

Modeling and simulation (1/5)

Kinetic model

S1a site for weak adsorption and physisorption	$NH_{3(g)} + S1a \iff NH_3 - S1a$
S1b weak Brønsted and Lewis sites	$NH_{3(g)} + S1b \iff NH_3 - S1b$
NH ₃ multi-layer formation on S1a and S1b sites	$2\mathrm{NH}_{3(g)} + \mathrm{NH}_3 - \mathrm{S}_j \iff \mathrm{NH}_3 - \mathrm{NH}_3 - \mathrm{NH}_3 - \mathrm{S}_j$
S2 intermediate Brønsted acidic sites	$NH_{3(g)} + S2 \implies NH_3 - S2$
S3 strong Brønsted acidic sites	$NH_{3(g)} + S3 \implies NH_3 - S3$
S4 monomeric and/or binuclear Fe	$NH_{3(g)}+S4 \rightarrow NH_3-S4$

Reaction rate expressions

$$R_{j_{NH_{3}}ads} = A_{j_{NH_{3}}ads} \cdot \exp\left(-\frac{E_{j_{NH_{3}}ads}}{R \cdot T_{s}}\right) \cdot C_{NH_{3}} \cdot (1 - \vartheta_{j})$$

$$R_{j_{NH_{3}}des} = A_{j_{NH_{3}}des} \cdot \exp\left(-\frac{E_{j_{NH_{3}}des} \cdot \left(1 - a_{j} \cdot \vartheta_{j}\right)}{R \cdot T_{s}}\right) \cdot \vartheta_{j}$$

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2013, 10-12.04.2013

The IFP-Exhaust Library

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2013, 10-12.04.2013

© 2013 - IFP Energies nouvelles

Modeling and simulation (2/5)

Reproduction of experimental set-up

Modeling and simulation (3/5)

Kinetic parameters calibration

Type of site	[1	A _{ads} [m ³ /s·kg _{zeolite}]		E _{ads} [kJ/mol]		A _{des} [mol/s·kg _{zeolite}]		"]	E _{des} [kJ/mol]		α [-]		
S1a (sites for physisorption a weak adsprption)	and	700		0			1.8·10 ¹²		80.80		0.11		
S1b (weak acidic sites)		1200		0			1013		97.79		0.11		
Multi-layer formation on S1a S1b sites	a,	6.6·10 ⁸		0			9.6·10 ¹³		40.00		0.00		
S2 (intermediate Brønsted si	tes)	900		0			1013		119.50		0.11		
S3 (strong Brønsted sites)		900		0			1013		148.80		0.11		
S4 (metallic sites)		500		0			1013		145.00		0.15		
Entropy change		hange	Non activated				Immobile molecules				Homogeneous acidity strength		
	ootimot		process				ad an	D	Data from thermo-gravimetric measurements				

- NH₃ storage capacity estimation over each site based on
- Fe-BEA structural properties: Si/Al and Fe/Al
- Data obtained from catalyst characterization: Ex-situ IR
- **NH**₃**-TPD profiles** obtained over the H- and Fe-BEA studied samples

SKARLIS et al. J. Phys. Chem. C 2013 117, 7154–7169

Modeling and simulation (5/5)

- Fe-zeolite based Urea-SCR catalysts
- A multi-site kinetic modeling approach
- IR spectroscopy based multi-site kinetic modeling
 - Fe-BEA synthesis and characterization
 - NH₃ adsorption: IR spectroscopic measurements
 - Modeling and simulation

Conclusions and perspectives

Conclusions and perspectives

- Multi-site kinetic model for NH₃ adsorption and desorption over Fe-BEA
- Model development based on IR spectroscopic measurements
- Kinetics calibration according to theoretical and experimental studies

Further extension of the multi-site kinetic model to include additional reactions is underway

Model extension to NO_v adsorption

Operando IR spectroscopic measurements over the 1.75% Fe-BEA

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2013, 10-12.04.2013

© 2013 - IFP Energies nouvelles

Thank you for your kind attention

Sincere acknowledgements to Mr. J.C. Morin as well as Drs. S. Carré, N. Rankovic and N. Bats for their contribution to the presented work

The presented work was performed under supervision of: David Berthout^a, André Nicolle^a, Christophe Dujardin^b, Pascal Granger^b

^aIFP Energies Nouvelles, France ^bUnité de Catalyse et de Chimie du Solide - Université de Lille 1, France Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources

Innover les énergies © 2013 - IFP Energies nouvelles Energies nouvelles www.ifpenergiesnouvelles.fr

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2013, 10-12.04.2013