SLOAN AUTOMOTIVE

Fundamental Processes Controlling Ash Accumulation in Diesel Particulate Filters and Impacts on DPF Performance

2012 DOE Crosscut Workshop

on Lean Emissions Reduction Simulation

May 2, 2012

Alexander Sappok

V. Wong, C. Kamp, S. Munnis, I. Dimou, C. Chiou, Y. Wang, I Govani, M. Bahr, E. Cross, J. Kroll

Massachusetts Institute of Technology

Sloan Automotive Laboratory

Cambridge, MA

Ash Accumulation Reduces DPF Life and Engine Efficiency

SLOAN AUTOMOTIVE LABORATORY

Ash Accumulation and Deposit Formation Differs from PM!

SLOAN AUTOMOTIVE

Program Approach & Consortium Activities

SLOAN AUTOMOTIVE LABORATORY

"Holistic approach considering lubricant chemistry, engine operation, and aftertreatment design through combination of focused experiments and theoretical models."

Enhance fundamental understanding of key parameters controlling ash properties and impact on aftertreatment performance.

Experimental Facilities

SLOAN AUTOMOTIVE LABORATORY

Шii

DPF Bench Reactors

Cummins ISB 300

- □ Variable geometry turbocharger
- Cooled EGR
- Common rail fuel injection
- Fully electronically controlled
- Gaseous and PM emissions measurement systems

Accelerated Ash Loading 5

Analytical Test Facilities

SLOAN AUTOMOTIVE LABORATORY

Materials Analysis

•FTIR, Raman, XPS, Optical Microscopes

•Thermal Analysis

• TGA, ICP-OES

Electron Microscopy

•SEM – EDX, TEM, FIB

•X-Ray Diffraction

Ash Exposed to Elevated Temperatures

Extensive and increasing use as part of DPF post-mortem analysis and ash characterization

Key Parameters Controlling Ash Deposits and DPF Impacts

SLOAN AUTOMOTIVE

Engine-Out Ash Emissions and Transport

• Form of ash in exhaust/feed gas entering DPF; ash trapping efficiency

Ash Deposit Accumulation and Build-Up in the DPF

• Agglomerate formation and ash mobility/distribution in DPF

Ash Impact on DPF Pressure Drop Response

• Ash composition and properties relevant to DPF performance

Sensitivity of DPF Design Parameters to Ash Accumulation

• Substrate materials, pore size & distribution, porosity

Role of Engine Control Strategies and Exhaust Conditions

• Temperature, flow, and feed gas conditions affecting ash deposits

Regeneration Processes

• Real-time optical studies of ash formation and mobility

Ash – Catalyst Interactions

• Chemical and physical interactions of ash and catalyst/washcoat

Lubricant-Derived Ash Precursors Bound to PM

SLOAN AUTOMOTIVE

1111

SAE 2007-01-0318

Lubricant-derived ash transported to DPF bound to carbonaceous PM

□ Size of ash precursors of same order or smaller than PM agglomerates

- □ No lubricant-derived ash particles found separate from PM
- Cu peaks due to background from copper TEM grid

Nearly All Metallic Ash Components Trapped in DPF

SLOAN AUTOMOTIVE LABORATORY

Measured elemental trapping efficiency in DPF

	Ca	Fe	Mg	Р	S	Zn
Trapping Efficiency	99.87%	92.43%	98.01%	85.09%	64.89%	99.67%

- Elemental emission rates determined from ICP analysis
- Post-DPF PM sampling 20 hours for sample size of 2-3 mg

Particle Mass Spectrometer for Ash Measurements

ASME ICEF2011-60100

SLOAN AUTOMOTIVE

LABORATORY

Real-Time Measurement of Exhaust Ash Emissions (I)

ASME ICEF2011-60100

SLOAN AUTOMOTIVE

LABORATORY

Real-Time Measurement of Exhaust Ash Emissions (II)

ASME ICEF2011-60100

SLOAN AUTOMOTIVE

LABORATORY

Date and Time

Key Parameters Controlling Ash Deposits and DPF Impacts

SLOAN AUTOMOTIVE

Engine-Out Ash Emissions and Transport

• Form of ash in exhaust/feed gas entering DPF; ash trapping efficiency

Ash Deposit Accumulation and Build-Up in the DPF

• Agglomerate formation and ash mobility/distribution in DPF

Ash Impact on DPF Pressure Drop Response

• Ash composition and properties relevant to DPF performance

Sensitivity of DPF Design Parameters to Ash Accumulation

• Substrate materials, pore size & distribution, porosity

Role of Engine Control Strategies and Exhaust Conditions

• Temperature, flow, and feed gas conditions affecting ash deposits

Regeneration Processes

• Real-time optical studies of ash formation and mobility

Ash – Catalyst Interactions

• Chemical and physical interactions of ash and catalyst/washcoat

Initial Ash Deposition and Layer Formation

SLOAN AUTOMOTIVE

Application of Tracer Produces Stratified Ash Layers

SLOAN AUTOMOTIVE LABORATORY

ASME ICEF2011-60072

IV

Voids in Ash Plug – Opportunities to Improve Packing

SLOAN AUTOMOTIVE

ASME ICEF2011-60072

Key Parameters Controlling Ash Deposits and DPF Impacts

SLOAN AUTOMOTIVE

Engine-Out Ash Emissions and Transport

• Form of ash in exhaust/feed gas entering DPF; ash trapping efficiency

Ash Deposit Accumulation and Build-Up in the DPF

• Agglomerate formation and ash mobility/distribution in DPF

Ash Impact on DPF Pressure Drop Response

• Ash composition and properties relevant to DPF performance

Sensitivity of DPF Design Parameters to Ash Accumulation

• Substrate materials, pore size & distribution, porosity

Role of Engine Control Strategies and Exhaust Conditions

• Temperature, flow, and feed gas conditions affecting ash deposits

Regeneration Processes

• Real-time optical studies of ash formation and mobility

Ash – Catalyst Interactions

• Chemical and physical interactions of ash and catalyst/washcoat

Additive Chemistry Impact on Ash Properties

SLOAN AUTOMOTIVE

Lubricant matrix all formulated to 1% sulfated ash, except base oil.

Lubricont	Ca	Mg	Zn	Р	S	В	Мо
Lubricant	ррт	ррт	ррт	ррт	ррт	ррт	ррт
Base	<1	<1	<1	8	60	1	<1
Base + Ca	2,928	5	<1	2	609	3	<1
Base + Mg*	<1	2,070	<1	<1	460		<1
Base + ZDDP	<1	<1	2612	2,530	6,901	1	<1
Base, Ca+ZDDP*	2480	<1	1280	1,180	2,750		<1
Base, Mg+ZDDP*	<1	1730	1280	1,180	2,840		<1
Commercial CJ-4	1,388	355	1,226	985	3,200*	586	77

Composition of ash directly related to lubricant additive chemistry.

Мај	or Ash Components	Density	Melting Point	Description
		g/cm ³	°C	
CaSO ₄	Calcium Sulfate	2.96	1,460	Sinters/Decomposes ~1,250 °C
CaZn ₂ (PO ₄) ₂	Calcium Zinc Phosphate	3.65		
$Zn_2(P_2O_7)$	Zinc Pyrophosphate	3.75		Sintering begins ~ 800 °C
Zn ₃ (PO ₄) ₂	Zinc Phosphate	4.00	900	Sintering begins ~ 800 °C
Zn ₂ Mg(PO ₄) ₂	Zinc Magnesium Phosphate	3.60		
MgO	Magnesium Oxide	3.58	2,832	
MgSO4	Magnesium Sulfate	2.66	1,124	Decompostion 900-1,100 °C

Ca Ash Shows 2X Increase in ΔP Over Zn & Mg Ash

ASME ICES2012-81237

SLOAN AUTOMOTIVE

Шii

LABORATORY

- Lubricant additive chemistry affects ash properties and pressure drop
- Ca-based ash shows much larger effect on pressure drop than Zn ash

* Assumes: 15 g/hr avg. oil consumption, avg. speed of 40 mph, and full size DPF of 12 L volume

Ash Chemistry Impacts Ash Properties and DPF ΔP

ASME ICES2012-81237

SLOAN AUTOMOTIVE LABORATORY

Detailed Understanding of Ash Properties Required

SLOAN AUTOMOTIVE

1417

$$\Delta P_{Wall \, / \, Ash \, / \, Soot} = \left(\frac{\mu}{K_P}\right) \cdot v_w \cdot w$$

$$K = f\left(\varepsilon, \overline{D}_{P}\right)$$

$$\mathcal{E} = 1 - \frac{\rho_{Packing}}{\rho_{Theoretical}}$$

Ash Properties

- o Provide critical information to explain fundamental differences in ΔP
- Complex mixture of metal oxides, sulfates, phosphates
- Characterization of particle morphology, physical, chemical properties challenge

New Techniques and Diagnostics

o C. Kamp Presentation (12/2010)

CJ-4 Ash Composition and Porosity

SLOAN AUTOMOTIVE

SAE 2010-01-1213

Ash – PM Layer Interface Clearly Defined

SAE 2012-01-0836

Focused Ion Beam (FIB) Milling Coupled with SEM

Unlike PM depth filtration in DPF surface pores, very little soot penetrates into ash layer.

SLOAN AUTOMOTIVE

LABORATORY

Individual Ash Particles Also Porous

SAE 2012-01-0836

Focused Ion Beam (FIB) Milling Coupled with SEM

SLOAN AUTOMOTIVE LABORATORY

Particle most likely formed from sintering/agglomeration of ash precursors.

Ash Particles and Agglomerates Porous Shells!

SLOAN AUTOMOTIVE LABORATORY

- Ash agglomerates consist of porous particles
- Consistent with low packing density and high porosity measurements

Images: C. Kamp

Ash Accumulation Also Influences Soot Properties

SAE 2010-01-0811

Cummumlative PM Load [g/l]

Ash deposits displace soot in DPF – higher local soot loads

SLOAN AUTOMOTIVE

LABORATORY

Variation in PM Layer Properties with DPF Flow Well-Known

SLOAN AUTOMOTIVE LABORATORY

Variation of Soot Properties Due to Ash Deposits

SLOAN AUTOMOTIVE LABORATORY

0%

-5%

-10% -15%

-20% -

0

10

20

Ash Load [g/L]

30

40

SAE 2010-01-0811

Soot Properties

75K GHSV

50K GHSV

50

• Estimated from empirical Pe number correlations for constant flow rate

 Low space velocity conditions most strongly affected by ash

Key Parameters Controlling Ash Deposits and DPF Impacts

SLOAN AUTOMOTIVE LABORATORY

Engine-Out Ash Emissions and Transport

• Form of ash in exhaust/feed gas entering DPF; ash trapping efficiency

Ash Deposit Accumulation and Build-Up in the DPF

• Agglomerate formation and ash mobility/distribution in DPF

Ash Impact on DPF Pressure Drop Response

• Ash composition and properties relevant to DPF performance

Sensitivity of DPF Design Parameters to Ash

• Substrate materials, pore size & distribution, porosity

Role of Engine Control Strategies and Exhaust Conditions

• Temperature, flow, and feed gas conditions affecting ash deposits

Regeneration Processes

• Real-time optical studies of ash formation and mobility

Ash – Catalyst Interactions

• Chemical and physical interactions of ash and catalyst/washcoat

Sensitivity of DPF Design Parameters to Ash

SLOAN AUTOMOTIVE

Шiī

Matrix	Porosity	Mean Pore Size
1 st Trial	<u>Low</u> High	Low
2 nd Trial	High	<u>Low</u> High
3 rd Trial	Moderate	Low

Additional DPF Parameters

- Filter/substrate materials
- DPF coatings and catalysts
- Filter geometry and cell configuration

Ash Loading

DPFs Experience Even Ash Loading and Temperatures

SLOAN AUTOMOTIVE LABORATORY

Шii

Average Ash Deposition after 60 hrs of operation: 20 g/L

 Little ΔP variation between duplicate samples

Pressure Drop Variation

Similar ΔP Response to PM Accumulation for All DPFs

SLOAN AUTOMOTIVE LABORATORY

Sensitivity of DPF Porosity to Ash Accumulation Varies

SLOAN AUTOMOTIVE LABORATORY

- Sensitivity of ΔP to ash accumulation increases with decreasing DPF porosity at low filter ash levels
- Шif
- At high ash loads, ash dominates ΔP, which is insensitive to initial DPF porosity of filter, over range tested

Key Parameters Controlling Ash Deposits and DPF Impacts

SLOAN AUTOMOTIVE LABORATORY

Engine-Out Ash Emissions and Transport

• Form of ash in exhaust/feed gas entering DPF; ash trapping efficiency

Ash Deposit Accumulation and Build-Up in the DPF

• Agglomerate formation and ash mobility/distribution in DPF

Ash Impact on DPF Pressure Drop Response

• Ash composition and properties relevant to DPF performance

Sensitivity of DPF Design Parameters to Ash Accumulation

• Substrate materials, pore size & distribution, porosity

Engine Control Strategies and Exhaust Conditions

• Temperature, flow, and feed gas conditions affecting ash deposits

Regeneration Processes

• Real-time optical studies of ash formation and mobility

Ash – Catalyst Interactions

• Chemical and physical interactions of ash and catalyst/washcoat

Exhaust Conditions Are Continually Changing

SLOAN AUTOMOTIVE

DPF Temperature Distribution

• Potential for short excursions above 700 °C over DPF operating history

Exhaust Temperature Significantly Affects Ash Volume

SLOAN AUTOMOTIVE

SAE 2012-01-1093

Competing Effects on ΔP Based on Ash Distribution

Large decrease in ash volume for temperatures over 700 °C

□ Reduction in ash weight over temperature ranges less than 10%

□ Typical ash porosities 85% - 95% means large potential to reduce volume

Elevated Temperatures Exert Large Effect on Ash Packing

SLOAN AUTOMOTIVE

SAE 2012-01-1093

Large Reduction in Ash Volume at Elevated Temperatures

SAE 2012-01-1093

SLOAN AUTOMOTIVE

High Temperatures Cause Ash Layer Cracking/Shrinking

SAE 2012-01-1093

SLOAN AUTOMOTIVE

Шiī

Despite large volume reduction, ash weigh change < 7%

Similar Behavior in Lab/Field Ash May Be Due to Chemistry

SLOAN AUTOMOTIVE LABORATORY

SAE 2012-01-1093

Chemical and Physical Changes in Ash at High Temps.

SLOAN AUTOMOTIVE

SAE 2012-01-1093

Applications to Understand Field DPF History

SLOAN AUTOMOTIVE LABORATORY

Шii

SAE 2012-01-1093

"Normal" Field Ash

Field Ash Exposed to Thermal Event

Ash Necking & Agglomeration

Wetting on Substrate

Conceptual Description of Temperature Effects on Ash

SLOAN AUTOMOTIVE

Possible Effect of Temperature on Ash Deposits

Competing Processes Require Detailed Understanding

- Elevated temperatures result in significant ash volume reduction
- Location of ash deposits (channel vs. wall) plays a large role in impact on ΔP
- Deterioration of ash cake layer could result in increased Δ P with soot

Key Parameters Controlling Ash Deposits and DPF Impacts

SLOAN AUTOMOTIVE

Engine-Out Ash Emissions and Transport

• Form of ash in exhaust/feed gas entering DPF; ash trapping efficiency

Ash Deposit Accumulation and Build-Up in the DPF

• Agglomerate formation and ash mobility/distribution in DPF

Ash Impact on DPF Pressure Drop Response

• Ash composition and properties relevant to DPF performance

Sensitivity of DPF Design Parameters to Ash Accumulation

• Substrate materials, pore size & distribution, porosity

Role of Engine Control Strategies and Exhaust Conditions

• Temperature, flow, and feed gas conditions affecting ash deposits

Regeneration Processes

• Real-time optical studies of ash formation and mobility

Ash – Catalyst Interactions

• Chemical and physical interactions of ash and catalyst/washcoat

Optical Access System for DPF Regeneration Studies

SLOAN AUTOMOTIVE

Understand Influence of Regeneration on Ash Properties

- □ Active/Passive strategies may impact ash agglomeration and mobility
- Role of soot interactions with ash during regeneration important

Regeneration Parameters

- Thickness of PM Layer
- Role of NO₂ from DOC vs. CDPF
- Temperature and flow conditions
- Catalysts interactions

Video: PM Oxidation on Clean DPF Surface (Heavy PM)

SLOAN AUTOMOTIVE LABORATORY

Video: PM Oxidation with Ash (DPF Cross Section)

SLOAN AUTOMOTIVE LABORATORY

Current Optical Setup for Flow Reactor Testing

SLOAN AUTOMOTIVE

Video: PM Oxidation on Clean DPF Surface (Heavy PM)

SLOAN AUTOMOTIVE LABORATORY

Ash Deposition on Top of PM Layer: Regeneration

SLOAN AUTOMOTIVE

Coat surface of soot cake with thin layer of ash

- Allows for visualization of ash/PM mobility during regeneration
- Enables visualization of ash agglomerate formation

Ash Deposition on Top of PM Layer: Regeneration

SLOAN AUTOMOTIVE LABORATORY

Pliī

Regeneration with thin ash layer covering PM surface

Video: Ash Deposited on Top of PM Layer

SLOAN AUTOMOTIVE LABORATORY

Ash Agglomeration Process During Soot Oxidation

SLOAN AUTOMOTIVE

Ash residence time in DPF is long ~ 100,000 + Miles

Internal void shows walls composed of ~nm scale particles

Key Parameters Controlling Ash Deposits and DPF Impacts

SLOAN AUTOMOTIVE

Engine-Out Ash Emissions and Transport

• Form of ash in exhaust/feed gas entering DPF; ash trapping efficiency

Ash Deposit Accumulation and Build-Up in the DPF

• Agglomerate formation and ash mobility/distribution in DPF

Ash Impact on DPF Pressure Drop Response

• Ash composition and properties relevant to DPF performance

Sensitivity of DPF Design Parameters to Ash Accumulation

• Substrate materials, pore size & distribution, porosity

Role of Engine Control Strategies and Exhaust Conditions

• Temperature, flow, and feed gas conditions affecting ash deposits

Regeneration Processes

• Real-time optical studies of ash formation and mobility

Ash – Catalyst Interactions

• Chemical and physical interactions of ash and catalyst/washcoat

Summary and Conclusions

SLOAN AUTOMOTIVE

Detailed understanding of all system parameters important to reduce impact of ash on DPF degradation and fuel efficiency.

- **I. Ash Build-Up:** Ash loading of ~ 10 g/L or around 50,000 miles required to form fully-established ash layer.
- **II. Ash Morphology:** Two porosity scales identified in ash layer and ash primary particles, which are themselves hollow.
- **III. Lube Chemistry:** Ash properties and DPF pressure drop strong function of additive composition.
- **IV. Exhaust Conditions:** Transient changes in temperature induce much larger variations in ash packing than high flow rates.
- V. DPF Parameters: DPF pressure drop relatively insensitive to original substrate porosity following ash layer build-up.

VI. Regeneration Effects: Preliminary optical studies highlight importance of regeneration parameters but requires further study. 56

Acknowledgements

SLOAN AUTOMOTIVE

We thank the following organizations for their support:

- Caterpillar	- Chevron/Oronite	- Cummins	
- Detroit Diesel	- Infineum	- Komatsu	
- NGK	- Oak Ridge National Lab	- Süd-Chemie	
- Valvoline	- US Department of Energy		
- Ciba	- Ford	- Lutek	

MIT Center for Materials Science and Engineering

