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Emissions Control – Background
Emissions from engines are major sources of urban air 
pollution. 
The gasoline engine exhaust gases contain oxides of 
nitrogen (NOx), carbon monoxide (CO), and partially burned 
or unburned hydrocarbons (HC).
The major pollutants from diesel engines are particulate 
matter (PM) and NOx. 
These pollutants have hazardous effects on environment 
and living beings.
These pollutants are removed from the exhaust gases by 
employing aftertreatment devices.
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The development of an efficient NOx reduction technology is 
essential in spreading the use of diesel engines.
Since the three-way catalyst has poor NOx conversion efficiency 
in the lean environment, it cannot be used in diesel applications.
Selective Catalytic Reduction (SCR) of NOx with N-containing 
agents (ammonia and urea) is a promising technology for 
controlling NOx from diesel exhaust.
Due to difficulties associated with handling and higher toxicity
of ammonia, urea is a preferred carrier for ammonia for mobile 
applications.

Background
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Objectives

To investigate the physiochemical processes and 
develop a quantitative predictive understanding 
of the SCR systems for diesel engines

To make recommendations for design changes to 
improve the performance of SCR systems
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Physical Formulation

Washcoat
Substrate

Exhaust gas •Axial heat conduction
•Convective heat and mass transfer
•(Gas phase chemical reaction)
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    Inlet diffuser     Catalyst      Outlet diffuser          Cell/channel 
                           

                 Side view of catalyst assembly             Front view of 
                                                                                catalyst brick 
 

Exhaust gases 
from engine 

Exhaust gases 
to tailpipe 

•Heterogeneous chemical  
reaction
•Heat generation
•Pore diffusion
•Surface adsorption and 
desorption
•Diffusion
•(Radial conduction)

•Axial heat conduction
•Heat losses to ambient
•(Radiation heat losses)
Physical & chemical 
phenomena in a single 
channel
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Conservation of energy (gas phase)

Conservation of species (gas phase)

Conservation of energy (solid phase)

Conservation of species (solid phase)

Governing Equations
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Accumulation and depletion of NH3 on the catalyst surface

where

is catalyst NH3 adsorption capacity [mol/m3]

is NH3 surface coverage [-]

is void volume fraction [-]
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Reaction Kinetics

NH3 adsorption-desorption
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Reaction Kinetics

NH3 oxidation
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Reaction Kinetics

Standard SCR reaction
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The equations were discretized by using the control 
volume approach with a non uniform grid, and the central 
implicit difference scheme for space variable.

A standard tridiagonal matrix algorithm with a successive 
line under relaxation method was used to solve the 
equations.

The boundary and initial conditions were obtained 
experimentally.

Solution Procedure
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Validation of Results

Two experiment types:
Temperature programmed desorption
SCR performance with NO-NH3 in the infeed gas

SCR catalyst geometry
Hydrothermally aged catalyst 64 hrs @ 670°C
Cell density (cells/inch2): 400
Wall thickness (mil): 6.5
Sample diameter (inch): Ø1
Length (inch): 1
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Simulation of TPD performance

GHSV (hr -1) = 30,000 and 60,000
Adsorption Temperatures (°C):

50, 100, 150, 250, 350
Desorption Ramp Rate (°C/min): 10
Infeed NH3 (PPM): 175, 260, 350
Infeed O2, CO2, H2O (%): 14, 5, 5
Measured outlet PPMs: NH3
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Kinetic Parameters

Reference: SAE paper 2005-01-0965
Chatterjee et al.

kads [1/s] 1.3E03

Ω [mol/m3] 70

ko
des [mole/m3/s] 3.9E10

Eo
des [J/mole] 117E03*0.9 

γ [-] 0.51
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GHSV = 30,000 hr –1 ; Temperature = 100oC; Inlet NH3 = 350 PPM

Simulation of TPD performance
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Simulation of TPD performance

GHSV = 30,000 hr –1 ; Temperature = 250oC; Inlet NH3 = 350 PPM
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Simulation of TPD performance
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Simulation of TPD Performance

0

100

200

300

400

500

0 1000 2000 3000 4000 5000 6000

Time [sec]

Te
m

pe
ra

tu
re

/C
on

ce
nt

ra
tio

n
[ o 

C
 / 

PP
M

]

0

0.1

0.2

0.3

0.4

0.5

Th
et

a 
[-]

Temperature
NH3 in
Measured NH3 out
Model NH3 out
Theta

GHSV = 30,000 hr –1 ; Temperature = 150oC; Inlet NH3 = 260 PPM



University of Michigan-Dearborn

Simulation of SCR Performance

GHSV (hr -1) = 30,000, 60,000, and 120,000

Temperatures (°C):
150, 200, 250, 300, 350, 400, 450, 500

Infeed NO, and NH3 (PPM): 350, 350

Infeed O2, CO2, H2O (%): 14, 5, 5

Measured outlet PPMs: NH3, NO, N2O, NO2
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Kinetic Parameters

ko
ox [mole/m3/s] 1.1E09

ENO [J/mole] 55E03*1.039

KLH [-] 8.2

Eox [J/mole] 118E03

ko
NO [1/s] 2.2E08

β [-] 0.27

Reference: SAE paper 2005-01-0965
Chatterjee et al.
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Simulation of SCR Performance

GHSV = 30,000 hr –1 ; Temperature = 150oC; Inlet NH3 and NO = 350 PPM
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Simulation of SCR Performance

GHSV = 30,000 hr –1 ; Temperature = 250oC; Inlet NH3 and NO = 350 PPM
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Simulation of SCR Performance
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Simulation of SCR Performance
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Simulation of SCR Performance

GHSV = 30k hr –1 ; Inlet NH3 and NO = 350 PPM
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Conclusions

Model results for TPD are in good agreement with measurement 
data
Present kinetics shows increasing outlet NO PPM with 
temperature at high temperatures
Smaller activation energy for NH3 oxidation results in higher 
outlet NO PPM
Decreasing activation energies for SCR reaction increase the 
conversion efficiency of NO
At higher GHSV and higher temperatures, the catalyst can 
adsorb less NH3
Fast SCR reactions are being incorporated in the model
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End

Thank you for the attention!
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