

A Numerical Investigation of the Performance Analysis of Ammonia Based SCR Aftertreatment Systems

Nimrod Kapas, Tariq Shamim The University of Michigan-Dearborn and Paul Laing Ford Motor Company

> Financial Support Ford Motor Company

Emissions Control – Background

- Emissions from engines are major sources of urban air pollution.
- The gasoline engine exhaust gases contain oxides of nitrogen (NOx), carbon monoxide (CO), and partially burned or unburned hydrocarbons (HC).
- The major pollutants from diesel engines are particulate matter (PM) and NO_x.
- These pollutants have hazardous effects on environment and living beings.
- These pollutants are removed from the exhaust gases by employing aftertreatment devices.

Background

- The development of an efficient NO_x reduction technology is essential in spreading the use of diesel engines.
- Since the three-way catalyst has poor NO_x conversion efficiency in the lean environment, it cannot be used in diesel applications.
- Selective Catalytic Reduction (SCR) of NO_x with N-containing agents (ammonia and urea) is a promising technology for controlling NO_x from diesel exhaust.
- Due to difficulties associated with handling and higher toxicity of ammonia, urea is a preferred carrier for ammonia for mobile applications.

Objectives

To investigate the physiochemical processes and develop a quantitative predictive understanding of the SCR systems for diesel engines

To make recommendations for design changes to improve the performance of SCR systems

Physical Formulation

Governing Equations

Conservation of energy (gas phase)

$$\rho_{g}C_{pg}\left(\varepsilon \frac{\partial T_{g}}{\partial t} + v_{g} \frac{\partial T_{g}}{\partial z}\right) = -h_{g}G_{a}(T_{g} - T_{s})$$

Conservation of species (gas phase)

$$\varepsilon \frac{\partial C_g^{\ j}}{\partial t} + v_g \frac{\partial C_g^{\ j}}{\partial z} = -km^{-j}G_a \left(C_g^{\ j} - C_s^{\ j}\right)$$

Conservation of energy (solid phase)

$$(1 - \varepsilon) \rho_{s} C_{Ps} \frac{\partial T_{s}}{\partial t} = (1 - \varepsilon) \lambda_{s} \frac{\partial^{2} T_{s}}{\partial z^{2}} + h_{g} G_{a} (T_{g} - T_{s}) - h_{\infty} S_{ext} (T_{s} - T_{\infty}) + G_{a} \sum_{j=1}^{n_{reaction}} R^{j} (T_{s}, C_{s}^{1}, \dots, C_{s}^{n_{species}}) \cdot \Delta H^{j}$$

Conservation of species (solid phase)

$$(1-\varepsilon)\frac{\partial C_s^{\,j}}{\partial t} = km^{\,j}G_a(C_g^{\,j} - C_s^{\,j}) - G_aR^{\,j}(T_s, C_s^{\,1}, \cdots, C_c^{\,N_{species}})$$

Governing Equations

Accumulation and depletion of NH₃ on the catalyst surface

$$\Omega_{j} \cdot \frac{\partial \mathcal{G}_{j}}{\partial t} = R_{j}$$

- where
- Ω is catalyst NH₃ adsorption capacity [mol/m³]
- $\boldsymbol{\mathcal{G}}$ is NH₃ surface coverage [-]
- *E* is void volume fraction [-]

NH₃ adsorption-desorption

 $NH_3 \leftrightarrow NH_3^*$

$$\boldsymbol{r}_{ads} = \boldsymbol{k}_{ads} \cdot \boldsymbol{C}_{s}^{NH_{3}} \cdot \left(1 - \boldsymbol{\mathcal{G}}\right)$$

$$r_{des} = k_{des}^{o} \cdot \exp\left[-\frac{E_{des}^{o}}{\Re \cdot T_{s}} \cdot (1 - \gamma \cdot \vartheta)\right] \cdot \vartheta$$

Reaction Kinetics

• NH₃ oxidation

$$4NH_3^* + 3O_2 \rightarrow 2N_2 + 6H_2O$$

$$\boldsymbol{r}_{ox} = \boldsymbol{k}_{ox}^{o} \cdot \exp\left(-\frac{\boldsymbol{E}_{ox}}{\boldsymbol{\Re} \cdot \boldsymbol{T}_{s}}\right) \cdot \left(\frac{\boldsymbol{p}_{O_{2}}}{\boldsymbol{0.02}}\right)^{\beta} \cdot \boldsymbol{\mathcal{G}}$$

Standard SCR reaction

$$4NH_3^* + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$$

$$r_{NO} = k_{NO}^{o} \cdot \exp\left(-\frac{E_{NO}}{\Re \cdot T_{s}}\right) \cdot \frac{C_{s}^{NO} \cdot \vartheta}{1 + K_{LH} \cdot \frac{\vartheta}{1 - \vartheta}} \cdot \left(\frac{p_{O_{2}}}{0.02}\right)^{\beta}$$

Solution Procedure

- The equations were discretized by using the control volume approach with a non uniform grid, and the central implicit difference scheme for space variable.
- A standard tridiagonal matrix algorithm with a successive line under relaxation method was used to solve the equations.
- The boundary and initial conditions were obtained experimentally.

Validation of Results

- >Two experiment types:
 - Temperature programmed desorption
 SCR performance with NO-NH₃ in the infeed gas

SCR catalyst geometry

- Hydrothermally aged catalyst 64 hrs @ 670°C
- Cell density (cells/inch²): 400
- >Wall thickness (mil): 6.5
- Sample diameter (inch): Ø1
- Length (inch): 1

Simulation of TPD performance

 GHSV (hr ⁻¹) = 30,000 and 60,000
 Adsorption Temperatures (°C): 50, 100, 150, 250, 350
 Desorption Ramp Rate (°C/min): 10
 Infeed NH₃ (PPM): 175, 260, 350
 Infeed O₂, CO₂, H₂O (%): 14, 5, 5
 Measured outlet PPMs: NH₃

Kinetic Parameters

k _{ads} [1/s]	1.3E03
k ^o des [mole/m ³ /s]	3.9E10
Eo _{des} [J/mole]	117E03*0.9
γ[-]	0.51
Ω [mol/m ³]	70

Reference: SAE paper 2005-01-0965 Chatterjee et al.

Simulation of TPD performance

GHSV = 30,000 hr $^{-1}$; Temperature = 100°C; Inlet NH₃ = 350 PPM

Simulation of TPD performance

GHSV = 30,000 hr $^{-1}$; Temperature = 250°C; Inlet NH₃ = 350 PPM

Simulation of TPD performance

GHSV = 60,000 hr $^{-1}$; Temperature = 50°C; Inlet NH₃ = 350 PPM

Simulation of TPD Performance

GHSV = 30,000 hr $^{-1}$; Temperature = 150°C; Inlet NH₃ = 260 PPM

GHSV (hr ⁻¹) = 30,000, 60,000, and 120,000
Temperatures (°C): 150, 200, 250, 300, 350, 400, 450, 500
Infeed NO, and NH₃ (PPM): 350, 350
Infeed O₂, CO₂, H₂O (%): 14, 5, 5
Measured outlet PPMs: NH₃, NO, N₂O, NO₂

Kinetic Parameters

k ^o ox [mole/m ³ /s]	1.1E09
E _{ox} [J/mole]	118E03
kº _{NO} [1/s]	2.2E08
E _{NO} [J/mole]	55E03*1.039
β[-]	0.27
K _{LH} [-]	8.2

Reference: SAE paper 2005-01-0965 Chatterjee et al.

Simulation of SCR Performance

GHSV = 30,000 hr⁻¹; Temperature = 150° C; Inlet NH₃ and NO = 350 PPM

Simulation of SCR Performance

GHSV = 30,000 hr⁻¹; Temperature = 250° C; Inlet NH₃ and NO = 350 PPM

Simulation of SCR Performance

GHSV = 120k hr $^{-1}$; Inlet NH₃ and NO = 350 PPM

Simulation of SCR Performance

GHSV = 60k hr $^{-1}$; Inlet NH₃ and NO = 350 PPM

Simulation of SCR Performance

GHSV = 30k hr $^{-1}$; Inlet NH₃ and NO = 350 PPM

- Model results for TPD are in good agreement with measurement data
- Present kinetics shows increasing outlet NO PPM with temperature at high temperatures
- Smaller activation energy for NH₃ oxidation results in higher outlet NO PPM
- Decreasing activation energies for SCR reaction increase the conversion efficiency of NO
- At higher GHSV and higher temperatures, the catalyst can adsorb less NH₃
- > Fast SCR reactions are being incorporated in the model

Thank you for the attention!