Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources

Multi-site Modeling for Urea/NH₃-SCR over Fe-Zeolites

Stavros SKARLIS CLEERS Workshop 2012

SEVENTH FRAMEWO

UCCS – Université Lille 1

ECOM

Vehicle Concept Modeling

Energies nouvelles

<u>Technical advisors team</u> André NICOLLE (Supervisor, IFP E.N.) David BERTHOUT (Supervisor, IFP E.N.) Christophe DUJARDIN (Academic Supervisor, Univ. Lille 1) Pascal GRANGER (Thesis Director, Univ. Lille 1)

nouvelles

- IFP Energies

2012 -

0

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2012, 30.04.2012

- Fe-zeolite Urea-SCR catalyst technology
- A multi-site kinetic model
- NH₃ storage on Fe-ZSM5
- Multi-site model development
- Conclusions and perspectives

Fe-zeolite based Urea-SCR catalyst technology

Fe-Zeolites as SCR catalysts

- High deNO_x efficiency over a broad range of temperatures: 150 – 500 °C

- Resistance to hydrothermal ageing

Alumina (Al_2O_3) – Silica (SiO_2) natural or synthetic materials

Macro-kinetic modeling of a Fe-zeolite based Urea-SCR catalyst for diesel engines aftertreatment system simulation

- Fe-zeolite Urea-SCR catalyst technology
- A multi-site kinetic model
- NH₃ storage on Fe-ZSM5
- Multi-site model development
- Conclusions and perspectives

A multi-site kinetic model (1/3)

Data extracted from Iwasaki et al. (A. Cat. A Gen., (2010), 390, 71-77)

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2012, 30.04.2012

A multi-site kinetic model (2/3)

2012 - IFP Energies nouvelles

A multi-site kinetic model (3/3)

Kinetic model

Reaction rate expressions	
Adsorption	
$R_{NH_{3}-ads} = k_{ads}(T_{s}) \cdot C_{NH_{3}} \cdot (1 - \theta_{j})$	Species Conservation
$k_{ads}(T_s) = A_{ads} \cdot \exp\left(-\frac{E_{ads}}{R \cdot T_s}\right)$	$\dot{\omega}_{NH_3} = \left(\sum_{j=1}^5 v_j R_j\right) \cdot m_{zeolite}$
Desorption	$\partial \theta_i$ 5
$R_{NH_3_des} = k_{des}(T_s, \theta_j) \cdot \theta_j$	$N_{j} \cdot \frac{\partial f}{\partial t} = \sum_{j=1}^{N} v_{j} \cdot R_{j}$
$k_{des} = A_{des} \cdot \exp\left(-\frac{E(\theta_j)_{des}}{R \cdot T_s}\right)$	j = S1, S2, S3, S4, S5
$E(\theta_j)_{des} = E_0 \cdot \left(1 - \alpha \cdot \theta_j\right)$	

The IFP-Exhaust Library

Catalytic reactor modeling based on the bond graph theory

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2012, 30.04.2012

© 2012 - IFP Energies nouvelles

- Fe-zeolite Urea-SCR catalyst technology
- A multi-site kinetic model
- NH₃ storage on Fe-ZSM5
- Multi-site model development
- Conclusions and perspectives

Calibration based on data reported in literature

NH₃ storage on Fe-ZSM5 (1/5)

A) Model Calibration

Kinetic parameters calibration

Type of site E_{ads} E_{des} Aads A_{des} α [m³/s·kg _{reolite}] [kJ/mol] [kJ/mol] [mol/s-kg_{reolite}] [-] **Reference Database** 1013 0.39 S1 (weak non acidic sites) 1200 0 95.0 1013 S2 (weak acidic sites) 700 0 134.5 0.155 10^{13} S3 (strong acidic sites) 0 950 195.0 0.130 S4 (metallic sites) 500 0 1013 125.0 0.10 S5 (dehydroxylation effects) 1014 255.0 800 0 0.00 Immobile Non activated Homogeneous molecules. process acidic strength Data from thermogravometric, calorimetric measurements...

NH₃ storage capacity estimation

- Estimation of NH₃ storage capacity over each surface site
- Estimation based on zeolite structural properties:
 - Si/Al
 - Fe/Al

Kinetic parameters manual calibration

Exp. results by Brandenberger et al. (J. Cat., 2009, 268, 297-306)

Type of site	A _{ads} [m ³ /s·kg _{zeolite}]	E _{ads} [kJ/mol]	A _{des} [mol/s·kg _{zeolite}]	E _{des} [kJ/mol]	α [-]	
S1 (weak non acidic sites)	1200	0	1013	95.0	0.39	
S2 (weak acidic sites)	700	0	1013	134.5	0.155	Man calibr
S3 (strong acidic sites)	950	0	1013	195.0	0.130	
S4 (metallic sites)	500	0	1013	125.0	0.10	
S5 (dehydroxylation effects)	800	0	1014	255.0	0.00	

ual ation

© 2012 - IFP Energies nouvelles

13

NH₃ storage on Fe-ZSM5 (4/5)

B) Model Validation: Fe-ZSM5 with different Fe loading

116 (15), pp 8437–8448 IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2012, 30.04.2012

NH₃ storage on Fe-ZSM5 (5/5)

C) Model Robustness: Experiment on a different H-ZSM5 sample

Recalibration of kinetic parameters				data reported in literature		orted ure	recalibrate values
Type of site	A _{ads} [m³/s-kg _{zeolite}]	E _{ads} [kJ/mol]	A _{des} [mol/s·kg _{zeolite}]		E _d [kJ/r	les nol]	α [-]
S1 (weak non acidic sites)	1200	0	1013		95	92.7	0.39
S2 (weak acidic sites)	700	0	1013		134.5	132	0.155
S3 (strong acidic sites)	950	0	1013		195	170	0.130

Different characteristics of parent zeolite with respect to the state of its structure (eg. history of the sample) (Rodriguez-Gonzalez et al., A. Cat. A: Gen. (2007) 328, 174-182) Skarlis et al. J. Phys. Chem. C 2012

116 (15), pp 8437–8448

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2012, 30.04.2012

- Fe-zeolite Urea-SCR catalyst technology
- A multi-site kinetic model
- NH₃ storage on Fe-ZSM5
- Multi-site model development
- Conclusions and perspectives

A. Lab-scale experiments

Catalysts preparation/characterization

1.75 %wt Fe-BETA

1.75 %wt Fe-BETA and H-BETA characterization through **RAMAN spectroscopy**

SCR experiments coupling IR spectroscopy

Experimental set-up of UCCS laboratory of University of Lille

B. Modeling and Simulation using IFP-Exhaust Library

Reproduction of experimental set-up

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2012, 30.04.2012

- Fe-zeolite Urea-SCR catalyst technology
- A multi-site kinetic model
- NH₃ storage on Fe-ZSM5
- Multi-site model development
- Conclusions and perspectives

Conclusions and perspectives

- Development of a multi-site kinetic model for NH₃ adsorption and desorption over Fe-ZSM5.
 - Validation and calibration by simulation of experiments applying different operating conditions
 - Skeleton of a multi-site kinetic model for SCR reactions over different Fe-zeolites
- Multi-site model capitalization: Experimental investigation and modeling and simulation.
- Work underway
 - Correlation between model sites and natural surface sites (Brønsted, Lewis etc.):
 - NH₃ adsorption and TPD experiments on 1.75% wt. Fe-BETA
 - publication under development.
 - Multi-site model development through experiments over 1.75% Fe-BETA:
 - NO_x storage and disproportionation
 - Focus on NH₄NO₃ formation and decomposition

Thank you for your kind attention

Stavros A. Skarlis kindly acknowledges the EU FP7 Marie Curie Initial Training Network (ITN) VECOM

Study of NH₃ storage on Fe-ZSM5 performed under supervision of: David Berthout^a, André Nicolle^a, Christophe Dujardin^b, Pascal Granger^b

^aIFP Energies Nouvelles, France ^bUnité de Catalyse et de Chimie du Solide - Université de Lille 1, France Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources

Innover les énergies

www.ifpenergiesnouvelles.fr

Energies nouvelles

IFP E.N., France – Techniques d'applications énergétiques – CLEERS Workshop 2012, 30.04.2012

© 2012 - IFP Energies nouvelles