Effectiveness of Desulfation Protocols on Dynamometer Aged LNT-SCR Systems

Rachel Snow, Doug Dobson, Santhoji Katare, and Robert Hammerle

Ford Motor Co.

Presentation Outline

- Dynamometer Aging
 - Experimental Set-up
 - 2- Desulfation Protocols (50,000 miles equivalent)
 - System Performance after Aging
- Effect of Protocol Sulfur Release
- Effect of Aging on Sulfur Release
- Accelerated Aging Conditions
 - Average/Peak Temperatures
 - Rich Time
 - HC and CO

LNT-SCR Concept for Lean NOx Reduction

Typical System

NOx Adsorber

NOx Adsorber Vol = 2x PGM = 2y

New System

- NOx Adsorber In-situ SCR
- Vol = 1x PGM = 1y Vol = 1x PGM = 0

- Products of LNTs NOx reduction include N2 and NH3.
- Replace ½ of lean NOx trap volume with ammonia SCR catalyst.
- Improves Net NOx conversion (to N2)

$$4NH3 + 4NO + O2 \rightarrow 4N2 + 6H2O$$

$$2NH3 + NO + NO2 \rightarrow 2N2 + 3H2O$$

50,000 mile Equivalent Aging Protocol for LNT-SCR System on Engine Dynamometer

Steady Engine Operation at 2000 rpm / 4 bar

```
MODE #1
Sulfur Exposure
DeNOx = 345^{\circ}C
L(s)/R(s) = 120/5
```

```
MODE #2
DeSOx* = \sim 670^{\circ}C
L(s)/R(s)
```

```
MODE #3
DPF Regen – 600°C
Lean Only
```

Desulfation Targets:

System A: 700°C ∓ 20°C

System B: 650°C ∓ 70°C

Average midbed temperature controlled by alternating between rich and lean post-injected engine operation.

Experimental Set-up and Measurement

LNT-SCR Gross NOx Conversion After 50,000 mi Equivalent Aging on Engine Dynamometer

Desulfation Protocol: System A

Desulfation Protocol: System B

Sulfur Release at Outlet of SCR During DeSOx (H2S, SO2, and COS Measured w/ a Mass Spectrometer)

System A Desulfation: #12

time (seconds)

System B Desulfation: #12

time (seconds)

Total Sulfur Removal per Desulfation

LNT Desulfation Temperatures over 50,000 mi Equivalent Aging on Engine Dynamometer

Desulfation Rich Time During 50,000 mile Equivalent Aging on Engine Dynamometer

CO and HC Emissions at the Inlet to the LNT during Desulfations over 50,000 mi Equivalent Aging

Average HC Concentration at Inlet to LNT During Desulfations over 50,000 mile Equivalent Aging

Fraction of Sulfur Removed as H2S

Sulfur Removed as SO2

Sulfur Removed as H2S

System A: Desulfation #12

tim e (seconds)

tim e (seconds)

Research & Advanced Engineering

System B: Desulfation #12

System B: Desulfation #40

Summary

- Rich conditions are necessary for the sulfur removal, however extending the rich time beyond a couple of minutes was not beneficial.
- Most of the sulfur release occurred at onset of switching to rich conditions after an extended lean period.
- The protocol used on System B better utilized the 10 minutes desulfation period due to lean/rich switching.

Summary

- For both protocols, SO2 production diminished over the course of the aging.
- The reduced amount of SO2 was offset by higher H2S emissions, although the total sulfur removed was still lower at the end of aging.
- The advantage of the lean/rich switching during desulfation diminished as the catalyst aged.